7.7 Hypotheses regarding spatial structure
We will evaluate the data support for the following hypotheses about the population structure:
- H1:
stock
3 subpopulations defined by management units - H2:
coast+PS
2 subpopulations defined by coastal versus WA inland - H3:
N+S
2 subpopulations defined by north and south split in the middle of Oregon - H4:
NC+strait+PS+SC
4 subpopulations defined by N coastal, S coastal, SJF+Georgia Strait, and Puget Sound - H5:
panmictic
All regions are part of the same panmictic population - H6:
site
Each of the 11 regions is a subpopulation
These hypotheses translate to these \(\mathbf{Z}\) matrices (H6 not shown; it is an identity matrix): \[\begin{equation*} \begin{array}{rcccc} &H1&H2&H4&H5\\ &\text{pnw ps ca}&\text{coast pc}&\text{nc is ps sc}&\text{pan}\\ \hline \begin{array}{r}\text{Coastal Estuaries}\\ \text{Olympic Peninsula} \\ \text{Str. Juan de Fuca} \\ \text{San Juan Islands} \\ \text{Eastern Bays} \\ \text{Puget Sound} \\ \text{CA Mainland} \\ \text{CA Channel Islands} \\ \text{OR North Coast} \\ \text{OR South Coast} \\ \text{Georgia Strait} \end{array}& \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}& \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}& \begin{bmatrix} 1 & 0 & 0 & 0\\ 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & 0 & 1\\ 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 1 & 0 & 0 \end{bmatrix}& \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \end{array} \end{equation*}\]
To tell MARSS()
the form of \(\mathbf{Z}\), we construct the same matrix in R. For example, for hypotheses 1, we can write:
<- matrix(0, 11, 3)
Z.model c(1, 2, 9, 10), 1] <- 1 # which elements in col 1 are 1
Z.model[c(3:6, 11), 2] <- 1 # which elements in col 2 are 1
Z.model[7:8, 3] <- 1 # which elements in col 3 are 1 Z.model[
Or we can use a short-cut by specifying \(\mathbf{Z}\) as a factor that has the name of the subpopulation associated with each row in \(\mathbf{y}\). For hypothesis 1, this is
<- factor(c("pnw", "pnw", rep("ps", 4), "ca", "ca", "pnw",
Z1 "pnw", "ps"))
Notice it is 11 elements in length; one element for each row of data.