5 Lab Intro
Lab 3 Common trends in plankton data
Background
For this lab you will use dynamic factor analysis (DFA) to examine common temporal patterns in plankton data from Lake Washington. These data are a bit noisy and gappy, so you will need to make some choices about which species and time period(s) to examine.
Teams
Team 1: Anna, Mary, Emma
Team 2: Matheus, Brian, Tina
Team 3: Ben, Nicole, Lilac
Lake Washington data
For reference, here are the columns in the Lake Washington data set:
Indices
Year
: year
Month
: month as an integer
Environmental data
Temp
: water temperature in degrees C
TP
: total phosphorous concentration in mg m-3
pH
: pH.
Phytoplankton
Cryptomonas
: small brown or green algae (edible)
Diatoms
: small algae rich in silica (edible)
Greens
: general class of algae (edible)
Bluegreens
: cyanobacteria that can fix nitrogen (inedible)
Unicells
: very small algae (edible)
Other.algae
: generic catch-all for atypical species (edible)
Zooplankton
Conochilus
: colonial form of rotifer (grazer)
Cyclops
: cyclopoid copepod (grazer)
Daphnia
: cladoceran (grazer)
Diaptomus
: calanoid copepod (grazer)
Epischura
: very large calanoid copepod (predator)
Leptodora
: very large cladoceran (predator)
Neomysis
: opossum shrimp (predator)
Non.daphnid.cladocerans
: catch-all for other cladocerans (grazers)Non.colonial.rotifers
: free-floating rotifers (grazers)
Tasks
Plot time series of densities for the different taxa and environmental covariates.
Select an appropriate time period of at least 5 years (60 months) and fit different forms of DFA models with and without covariates.
Evaluate the model fits relative to the observed data for your best (or top 3) models.
Resources
Lab materials from April 20 [online here]
Chapter 10 Dynamic Factor Analysis. ATSA Lab Book. [online here]