Dynamic Linear Models (DLMs)

Author

Dylan, Liz, Maria

Published

May 11, 2023


Methods

Data

In this lab, we applied Dynamic Linear Models to examine some of the time-varying properties of the spawner-recruit relationship for Pacific salmon. We downloaded sockeye data from the Kvichak river system in Bristol Bay Alaska using the MARSS package. This included spawner and recruit data spanning from 1956 to 2005.

Environmental covariates

We tested the data support for the inclusion of annual summer and winter PDO values in our models. We also tested the support for sea surface temperature (SST). These data were also downloaded from the MARSS package in R.

Models in matrix form

We fit the following four models:

Model 1: Reduced Ricker model \[ \begin{equation} y_t = \begin{bmatrix}1\end{bmatrix}\begin{bmatrix} \alpha \\ \end{bmatrix}_t + v_t \\ \begin{bmatrix} \alpha \\ \end{bmatrix}_t \ = \begin{bmatrix} \alpha \\ \end{bmatrix}_{t-1} + \begin{bmatrix} w_{\alpha} \\ \end{bmatrix}_t \end{equation} \] \[ w_t \sim N(0, \begin{bmatrix} q_\alpha \end{bmatrix}) \]

Model 2: Full Ricker model

\[ \begin{equation} y_t = \begin{bmatrix} 1 & S_t \end{bmatrix}\begin{bmatrix} \alpha \\ \beta \end{bmatrix}_t + v_t \\ \begin{bmatrix} \alpha \\ \beta \end{bmatrix}_t = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}_{t-1} + \begin{bmatrix} w_{\alpha} \\ w_{\beta} \end{bmatrix}_t \end{equation} \] \[ w_t \sim N(0, \begin{bmatrix} q_\alpha & 0 \\ 0 & 0 \end{bmatrix}) \]

Model 3: Full Ricker model w/ summer pdo as a covariate

\[ \begin{equation} y_t = \begin{bmatrix} 1 & S_t & PDOsummer_t \end{bmatrix}\begin{bmatrix} \alpha \\ \beta \\ \delta\\ \end{bmatrix}_t + v_t \\ \begin{bmatrix} \alpha \\ \beta \\ \delta \\ \end{bmatrix}_t = \begin{bmatrix} \alpha \\ \beta \\ \delta \\ \end{bmatrix}_{t-1} + \begin{bmatrix} w_{\alpha} \\ w_{\beta} \\ w_{\delta} \\ \end{bmatrix}_t \end{equation} \] \[ w_t \sim N(0, \begin{bmatrix} q_\alpha & 0 & 0\\ 0 & 0 & 0 \\ 0 & 0 & q_\delta \end{bmatrix}) \]

Model 4: Full Ricker model w/ winter pdo as a covariate

\[ \begin{equation} y_t = \begin{bmatrix} 1 & S_t & PDOwinter_t \end{bmatrix}\begin{bmatrix} \alpha \\ \beta \\ \delta\\ \end{bmatrix}_t + v_t \\ \begin{bmatrix} \alpha \\ \beta \\ \delta \\ \end{bmatrix}_t = \begin{bmatrix} \alpha \\ \beta \\ \delta \\ \end{bmatrix}_{t-1} + \begin{bmatrix} w_{\alpha} \\ w_{\beta} \\ w_{\delta} \\ \end{bmatrix}_t \end{equation} \]

\[ w_t \sim N(0, \begin{bmatrix} q_\alpha & 0 & 0\\ 0 & 0 & 0 \\ 0 & 0 & q_\delta \end{bmatrix}) \] ## Model diagnositics

To examine our model assumptions, we inspected acf plots of our model residuals.

Data

The data are a dataframe with columns for brood year (brood_year), number of spawners (spawners), number of recruits (recruits) and PDO at year \(t-2\) in summer (pdo_summer_t2) and in winter (pdo_winter_t2).

Load the data

Code
## library(devtools)
## Windows users will likely need to set this
#Sys.setenv("R_REMOTES_NO_ERRORS_FROM_WARNINGS" = "true")
#devtools::install_github("nwfsc-timeseries/atsalibrary")

library(tidyverse)
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr     1.1.3     ✔ readr     2.1.4
✔ forcats   1.0.0     ✔ stringr   1.5.0
✔ ggplot2   3.4.2     ✔ tibble    3.2.1
✔ lubridate 1.9.2     ✔ tidyr     1.3.0
✔ purrr     1.0.1     
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ purrr::%||%()   masks base::%||%()
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
Code
library(MARSS)
## get data
data(KvichakSockeye, package="atsalibrary")
SR_data <- KvichakSockeye
head(SR_data)
# A tibble: 6 × 5
# Groups:   brood_year [6]
  brood_year spawners recruits pdo_summer_t2 pdo_winter_t2
       <dbl>    <dbl>    <dbl>         <dbl>         <dbl>
1       1952       NA    20200         -2.79         -1.68
2       1953       NA      593         -1.2          -1.05
3       1954       NA      799         -1.85         -1.25
4       1955       NA     1500         -0.6          -0.68
5       1956     9440    39000         -0.5          -0.31
6       1957     2840     4090         -2.36         -1.78

Wrangle the data

Code
#create log ratio for yt
SR_data$y <- log(SR_data$recruits/SR_data$spawners)

#date to columns
dat <- t(SR_data)
colnames(dat) <- SR_data$brood_year
dat <- dat[-1,]
dat <- dat[c(5,1,3,4,2),]

## plot response variable
dat.ts <- ts(log(SR_data$recruits/SR_data$spawners), start = 1952, end = 2005, frequency =1)
plot.ts(dat.ts)

Results

Task 1: Reduced Ricker

  1. We first fit a reduced form of Ricker’s model that includes only a time-varying level (\(\alpha_t\)) and observation error (\(v_t\)). That is,

\[ \begin{align*} \text{log}(R_t) &= \alpha_t + \text{log}(S_t) + v_t \\ \text{log}(R_t/S_t) &= \alpha_t + v_t \end{align*} \]

This model assumes no density-dependent survival in that the number of recruits is an ascending function of spawners.

Code
# NO density dependence / stochastic level 

mod1 <- list(
  Z = "identity",
  U="zero",
  R=matrix("r",nrow=1),
  B="identity",
  A="zero",
  Q=matrix("q",nrow=1)
)

m1 <- MARSS(dat[1,],model = mod1)
Success! abstol and log-log tests passed at 29 iterations.
Alert: conv.test.slope.tol is 0.5.
Test with smaller values (<0.1) to ensure convergence.

MARSS fit is
Estimation method: kem 
Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
Estimation converged in 29 iterations. 
Log-likelihood: -52.53672 
AIC: 111.0734   AICc: 111.6888   
 
      Estimate
R.r      0.228
Q.q      0.281
x0.x0    0.952
Initial states (x0) defined at t=0

Standard errors have not been calculated. 
Use MARSSparamCIs to compute CIs and bias estimates.

\(\alpha_t\) plot and the AICc.

Code
#plot alpha values
alpha1 <- as.numeric(m1$states)
alpha.se1 <- as.numeric(m1$states.se)
plot(alpha1~SR_data$brood_year,type='l', ylim=c(-3,3))
lines(alpha1+2*alpha.se1~SR_data$brood_year, lty="dashed")
lines(alpha1-2*alpha.se1~SR_data$brood_year, lty="dashed")

Code
#AICc value
m1$AICc
[1] 111.6888

The AICc of our first model is 111.688.

Model diagnostics

Code
#plot model residuals diagnostics. 
res <- residuals(m1)[,7]
tmp <- which(!is.na(res))
res <- res[tmp]
acf(res)

Code
#or 
#autoplot.marssMLE(m1)

plot(m1, plot.type = "qqplot.std.model.resids.ytt1")

plot type = qqplot.std.model.resids.ytt1
Code
plot(m1, plot.type = "acf.std.model.resids.ytt1")

plot type = acf.std.model.resids.ytt1

This simplified model show some signs of autocorrelation in residuals.

Task 2: Full Ricker Model

We then fit the full Ricker model with a time-varying intercept and a static effect of spawners.

Code
#we model the underlying states of alpha (brood-year productivity) and beta
#beta is prevented from changing.

spawn <- matrix(dat[2,-c(1:4)],nrow=1)    #not sure if we should scale this or not
ratio <- SR_data$y[-c(1:4)]               #remove responses that corresponded to Spawner = NA

m <- 2                     #number of parameters in process 
TT <- length(spawn)      #number of data points

B <-  diag(m)                         #"identity"
U <-  matrix(0, nrow = m, ncol = 1)   #"zero"
Q <- matrix(list("q.alpha", 0, 0, 0), nrow = 2)  # Setting the effect of spawners to static
Z <- array(NA, c(1, m, TT))  ## NxMxT; empty for now
Z[1,1,] <- rep(1, TT)        ## Nx1; 1's for intercept
Z[1,2,] <- spawn            ## Nx1; predictor variable 
A = matrix(0)            #"zero"
R <-  matrix("r")

inits_list <- list(x0 = matrix(c(0, 0), nrow = m))     
mod_list <- list(B = B, U = U, Q = Q, Z = Z, A = A, R = R)

## fit the model with MARSS
m2 <- MARSS(ratio, mod_list, inits = inits_list)
Success! abstol and log-log tests passed at 29 iterations.
Alert: conv.test.slope.tol is 0.5.
Test with smaller values (<0.1) to ensure convergence.

MARSS fit is
Estimation method: kem 
Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
Estimation converged in 29 iterations. 
Log-likelihood: -51.81022 
AIC: 111.6204   AICc: 112.6731   
 
          Estimate
R.r       2.19e-01
Q.q.alpha 2.92e-01
x0.X1     9.35e-01
x0.X2     7.02e-06
Initial states (x0) defined at t=0

Standard errors have not been calculated. 
Use MARSSparamCIs to compute CIs and bias estimates.

\(\alpha_t\) plot and the AICc.

The time series of \(\alpha_t\) for this model is an estimate of the stock productivity in the absence of density-dependent effects. Here we plot the ts of \(\alpha_t\) and note the AICc for this model.

Code
alpha <- as.numeric(m2$states[1,])
beta <- as.numeric(m2$states[2,]) # Here, beta does not time vary (this is the static effect of spawners)
alpha.se <- as.numeric(m2$states.se[1,])
beta.se <- as.numeric(m2$states.se[2,])

#from first model
plot(alpha1~SR_data$brood_year,type='l', ylim=c(-3,3), xlim= c(1950, 2005))
lines(alpha1+2*alpha.se1~SR_data$brood_year, lty="dashed")
lines(alpha1-2*alpha.se1~SR_data$brood_year, lty="dashed")
#second model
lines(alpha~SR_data$brood_year[-c(1:4)],type='l',col="red")
lines(alpha+2*alpha.se~SR_data$brood_year[-c(1:4)], lty="dashed", col="red")
lines(alpha-2*alpha.se~SR_data$brood_year[-c(1:4)], lty="dashed", col="red")

Code
#AIC value
m1$AICc
[1] 111.6888
Code
m2$AICc  #AICc is within a single point.
[1] 112.6731

How do these estimates of productivity compare to those from the previous question?

We were expecting the alphas (productivity) from model 2 to be smaller than model 1, however the estimated values of alpha are very similar in each model.

The model AICcs are also very similar and only vary by a single point.

Model diagnostics

Code
#plot model diagnostics. 
#autoplot.marssMLE(m2)

plot(m2, plot.type = "qqplot.std.model.resids.ytt1")

plot type = qqplot.std.model.resids.ytt1
Code
plot(m2, plot.type = "acf.std.model.resids.ytt1")

plot type = acf.std.model.resids.ytt1

Similar to our first model, the ACF plot still shows a lag at 5 and 10.

Task 3: Expanded Ricker with summer PDO

Next we fit the expanded Ricker model including the summer PDO index as the covariate (pdo_summer_t2).

Code
#first model we assume there is no density dependence
#we model the underlying states of alpha (brood-year productivity) and beta
#beta is prevented from changing.

pdo_s <- matrix(dat[3,-c(1:4)], nrow=1)
            
m <- 3                     #number of parameters in process 
TT <- length(spawn)      #number of data points

B <-  diag(m)                         #"identity"
U <-  matrix(0, nrow = m, ncol = 1)   #"zero"
Q <- matrix(list("q.alpha", 0,0,              #we no longer want alpha to vary
                 0, 0,0,  #Do we want beta to vary now?
                 0,0,"q.pdo_s"), nrow = 3, byrow = TRUE)  # to have characters and numbers in same matrix use a list
Z <- array(NA, c(1, m, TT))  ## NxMxT; empty for now
Z[1,1,] <- rep(1, TT)        ## Nx1; 1's for intercept
Z[1,2,] <- spawn           ## Nx1; predictor variable spawners
Z[1,3,] <-  pdo_s            ## Nx1; predictor PDO summer
A = matrix(0)                #"zero"
R <-  matrix("r")

inits_list2 <- list(x0 = matrix(c(0,0,0), nrow = m))     
mod_list2 <- list(B = B, U = U, Q = Q, Z = Z, A = A, R = R)
cont_list <- list(maxit=10000)
# run model
m3 <- MARSS(ratio, mod_list2, inits = inits_list2, method = "BFGS")
Success! Converged in 21 iterations.
Function MARSSkfas used for likelihood calculation.

MARSS fit is
Estimation method: BFGS 
Estimation converged in 21 iterations. 
Log-likelihood: -51.78324 
AIC: 115.5665   AICc: 117.8998   
 
          Estimate
R.r       2.00e-01
Q.q.alpha 3.17e-01
Q.q.pdo_s 1.73e-14
x0.X1     1.01e+00
x0.X2     5.49e-06
x0.X3     2.85e-02
Initial states (x0) defined at t=0

Standard errors have not been calculated. 
Use MARSSparamCIs to compute CIs and bias estimates.

\(\alpha_t\), \(\delta_t\) plots and the AICc.

What is the mean level of productivity?

The mean level of productivity is 0.26.

Code
alpha3 <- as.numeric(m3$states[1,])  #static number
beta3 <- as.numeric(m3$states[2,])
pdo_s <- as.numeric(m3$states[3,])

alpha.se3 <- as.numeric(m3$states.se[1,])
beta.se3 <- as.numeric(m3$states.se[2,])
pdo_s.se3 <- as.numeric(m3$states.se[3,])

mean_produc_m3 <- mean(alpha3)


#from first model
plot(alpha1~SR_data$brood_year,type='l', ylim=c(-3,3), xlim= c(1950, 2005))
lines(alpha1+2*alpha.se1~SR_data$brood_year, lty="dashed")
lines(alpha1-2*alpha.se1~SR_data$brood_year, lty="dashed")
#second model
lines(alpha~SR_data$brood_year[-c(1:4)],type='l',col="red")
lines(alpha+2*alpha.se~SR_data$brood_year[-c(1:4)], lty="dashed", col="red")
lines(alpha-2*alpha.se~SR_data$brood_year[-c(1:4)], lty="dashed", col="red")
#third model
lines(alpha3~SR_data$brood_year[-c(1:4)],type='l', col="blue")
lines(alpha3+2*alpha.se3~SR_data$brood_year[-c(1:4)], lty="dashed", col="blue")
lines(alpha3-2*alpha.se3~SR_data$brood_year[-c(1:4)], lty="dashed", col="blue")

Code
m1$states[-c(1:4)] #alpha from model 1 trimmed to same length as model 2 for comparison
 [1]  0.96768907  0.41504542 -0.07559988  0.09957993  0.66572593  0.41102136
 [7]  0.73469887  1.06271995  1.22760763  0.69548408  0.26109217 -0.47323645
[13] -0.87371945 -0.43990780  0.01784553  0.33968848  0.87191889  1.67428170
[19]  1.60321781  1.31753061  1.33987068  0.93953843  0.60900628  0.76058590
[25]  0.21761436  0.30919509  0.53966053  0.95001634  0.90106740  0.94894580
[31]  1.08056320  0.87788167  0.91717373  0.98016867  0.83743070  0.14769941
[37] -0.51871543 -0.34144531 -0.20468399 -0.11832377 -0.20219898 -0.67191046
[43] -0.80922950 -0.80922950 -0.80922950 -0.80922950 -0.80922950 -0.80922950
[49] -0.80922950 -0.80922950
Code
m2$states[1,]      #alpha from model 2
 [1]  0.93687677  0.38492602 -0.11351090  0.06306778  0.62042657  0.36572052
 [7]  0.71126813  1.05442108  1.21313214  0.60717372  0.21671558 -0.52213866
[13] -0.93477393 -0.50198037 -0.04751330  0.30283846  0.85410371  1.68340757
[19]  1.58176529  1.26071722  1.31990147  0.91346965  0.56035308  0.70295245
[25]  0.12188586  0.26371715  0.51157963  0.92734338  0.84922110  0.90504670
[31]  1.06045139  0.83829287  0.88203397  0.94266491  0.80852443  0.10911945
[37] -0.57699793 -0.38350912 -0.25223166 -0.16083111 -0.21672970 -0.69599440
[43] -0.83361454 -0.83361454 -0.83361454 -0.83361454 -0.83361454 -0.83361454
[49] -0.83361454 -0.83361454
Code
m3$states[1,]     #alpha from model 3
 [1]  1.01456328  0.43277203 -0.12293425  0.04161336  0.64985647  0.35020908
 [7]  0.72137765  1.09991480  1.29733813  0.65635620  0.26681983 -0.53165805
[13] -0.97250801 -0.48592658 -0.02317135  0.31549460  0.87999216  1.77563537
[19]  1.64858090  1.29918781  1.36825308  0.94561830  0.56281262  0.74843782
[25]  0.10640414  0.24853099  0.50294685  0.94388001  0.85522517  0.89233555
[31]  1.07259089  0.83162221  0.87814013  0.95487870  0.85044945  0.11469933
[37] -0.61207571 -0.37226049 -0.25357439 -0.16095392 -0.19724355 -0.72628320
[43] -0.86654476 -0.86654476 -0.86654476 -0.86654476 -0.86654476 -0.86654476
[49] -0.86654476 -0.86654476
Code
m2$states[2,]     # beta from model 2
 [1] 7.0198e-06 7.0198e-06 7.0198e-06 7.0198e-06 7.0198e-06 7.0198e-06
 [7] 7.0198e-06 7.0198e-06 7.0198e-06 7.0198e-06 7.0198e-06 7.0198e-06
[13] 7.0198e-06 7.0198e-06 7.0198e-06 7.0198e-06 7.0198e-06 7.0198e-06
[19] 7.0198e-06 7.0198e-06 7.0198e-06 7.0198e-06 7.0198e-06 7.0198e-06
[25] 7.0198e-06 7.0198e-06 7.0198e-06 7.0198e-06 7.0198e-06 7.0198e-06
[31] 7.0198e-06 7.0198e-06 7.0198e-06 7.0198e-06 7.0198e-06 7.0198e-06
[37] 7.0198e-06 7.0198e-06 7.0198e-06 7.0198e-06 7.0198e-06 7.0198e-06
[43] 7.0198e-06 7.0198e-06 7.0198e-06 7.0198e-06 7.0198e-06 7.0198e-06
[49] 7.0198e-06 7.0198e-06
Code
m3$states[2,]     #beta from model 3
 [1] 5.486033e-06 5.486033e-06 5.486033e-06 5.486033e-06 5.486033e-06
 [6] 5.486033e-06 5.486033e-06 5.486033e-06 5.486033e-06 5.486033e-06
[11] 5.486033e-06 5.486033e-06 5.486033e-06 5.486033e-06 5.486033e-06
[16] 5.486033e-06 5.486033e-06 5.486033e-06 5.486033e-06 5.486033e-06
[21] 5.486033e-06 5.486033e-06 5.486033e-06 5.486033e-06 5.486033e-06
[26] 5.486033e-06 5.486033e-06 5.486033e-06 5.486033e-06 5.486033e-06
[31] 5.486033e-06 5.486033e-06 5.486033e-06 5.486033e-06 5.486033e-06
[36] 5.486033e-06 5.486033e-06 5.486033e-06 5.486033e-06 5.486033e-06
[41] 5.486033e-06 5.486033e-06 5.486033e-06 5.486033e-06 5.486033e-06
[46] 5.486033e-06 5.486033e-06 5.486033e-06 5.486033e-06 5.486033e-06
Code
m3$states[3,]    #estimate of pdo_s coeficient was allowed to vary in Q but was estimated as static
 [1] 0.02846597 0.02846597 0.02846597 0.02846597 0.02846597 0.02846597
 [7] 0.02846597 0.02846597 0.02846597 0.02846597 0.02846597 0.02846597
[13] 0.02846597 0.02846597 0.02846597 0.02846597 0.02846597 0.02846597
[19] 0.02846597 0.02846597 0.02846597 0.02846597 0.02846597 0.02846597
[25] 0.02846597 0.02846597 0.02846597 0.02846597 0.02846597 0.02846597
[31] 0.02846597 0.02846597 0.02846597 0.02846597 0.02846597 0.02846597
[37] 0.02846597 0.02846597 0.02846597 0.02846597 0.02846597 0.02846597
[43] 0.02846597 0.02846597 0.02846597 0.02846597 0.02846597 0.02846597
[49] 0.02846597 0.02846597
Code
#AIC value
m1$AICc
[1] 111.6888
Code
m2$AICc  #AICc is within a single point.
[1] 112.6731
Code
m3$AICc  # getting worse
[1] 117.8998
Code
print(mean_produc_m3)
[1] 0.2587118

Plot the ts of \(\delta_t\) and note the AICc for this model.

The plot for state = X3 is the time series of \(delta_t\). The model estimates X3 to be 0.03 and static.

Code
autoplot(m3, plot.type = "xtT")

Model diagnostics

Code
plot(m3)

plot type =  fitted.ytT  Observations with fitted values
Hit <Return> to see next plot (q to exit): 

plot type = xtT Estimated states
Hit <Return> to see next plot (q to exit): 

plot type = model.resids.ytt1
Hit <Return> to see next plot (q to exit): 

plot type = std.model.resids.ytT
Hit <Return> to see next plot (q to exit): 

plot type = std.state.resids.xtT
Hit <Return> to see next plot (q to exit): 

plot type = qqplot.std.model.resids.ytt1
Hit <Return> to see next plot (q to exit): 

plot type = qqplot.std.state.resids.xtT
Hit <Return> to see next plot (q to exit): 

plot type = acf.std.model.resids.ytt1

Task 4: Expanded Ricker with winter PDO

Finally, we fit the expanded model including the winter PDO index as the covariate (pdo_winter_t2).

Code
pdo_w <- matrix(dat[4,-c(1:4)], nrow=1)

m <- 3                   #number of parameters in process 
TT <- length(spawn)      #number of data points

B <-  diag(m)                         #"identity"
U <-  matrix(0, nrow = m, ncol = 1)   #"zero"
Q <- matrix(list("q.alpha", 0,0,              #we no longer want alpha to vary
                 0, 0,0,  #Do we want beta to vary now?
                 0,0,"q.pdo_w"), nrow = 3, byrow = TRUE) # to have characters and numbers in same matrix use a list
Z <- array(NA, c(1, m, TT))  ## NxMxT; empty for now
Z[1,1,] <- rep(1, TT)        ## Nx1; 1's for intercept
Z[1,2,] <- spawn           ## Nx1; predictor variable spawners
Z[1,3,] <-  pdo_w           ## Nx1; predictor PDO summer
#Z[1,4,] <-  pdo_w            ## Nx1; predictor PDO winter
A = matrix(0)                #"zero"
R <-  matrix("r")

inits_list4 <- list(x0 = matrix(c(0,0,0), nrow = m))     
mod_list4 <- list(B = B, U = U, Q = Q, Z = Z, A = A, R = R)
cont_list <- list(maxit=10000)
# run model
m4 <- MARSS(ratio, mod_list4, inits = inits_list4, control = cont_list, method = "BFGS")
Success! Converged in 18 iterations.
Function MARSSkfas used for likelihood calculation.

MARSS fit is
Estimation method: BFGS 
Estimation converged in 18 iterations. 
Log-likelihood: -51.38573 
AIC: 114.7715   AICc: 117.1048   
 
          Estimate
R.r       1.96e-01
Q.q.alpha 3.11e-01
Q.q.pdo_w 4.17e-12
x0.X1     1.13e+00
x0.X2     1.32e-06
x0.X3     1.54e-01
Initial states (x0) defined at t=0

Standard errors have not been calculated. 
Use MARSSparamCIs to compute CIs and bias estimates.

\(\alpha_t\), \(\delta_t\) plots and the AICc.

What is the mean level of productivity? Plot the ts of \(\delta_t\) and note the AICc for this model. The mean productivity level is 0.28.

Code
alpha4 <- as.numeric(m4$states[1,])  #static number
beta4 <- as.numeric(m4$states[2,])
pdo_w4 <- as.numeric(m4$states[3,])

alpha.se4 <- as.numeric(m4$states.se[1,])
beta.se4 <- as.numeric(m4$states.se[2,])
pdo_s.se4 <- as.numeric(m4$states.se[3,])

mean_produc_m4 <- mean(alpha4)
print(mean_produc_m4)
[1] 0.2839821
Code
#from first model
plot(alpha1~SR_data$brood_year,type='l', ylim=c(-3,3), xlim= c(1950, 2005))
lines(alpha1+2*alpha.se1~SR_data$brood_year, lty="dashed")
lines(alpha1-2*alpha.se1~SR_data$brood_year, lty="dashed")
#second model
lines(alpha~SR_data$brood_year[-c(1:4)],type='l',col="red")
lines(alpha+2*alpha.se~SR_data$brood_year[-c(1:4)], lty="dashed", col="red")
lines(alpha-2*alpha.se~SR_data$brood_year[-c(1:4)], lty="dashed", col="red")
#third model
lines(alpha3~SR_data$brood_year[-c(1:4)],type='l', col="blue")
lines(alpha3+2*alpha.se3~SR_data$brood_year[-c(1:4)], lty="dashed", col="blue")
lines(alpha3-2*alpha.se3~SR_data$brood_year[-c(1:4)], lty="dashed", col="blue")
#fourth model
lines(alpha4~SR_data$brood_year[-c(1:4)],type='l', col="green")
lines(alpha4+2*alpha.se4~SR_data$brood_year[-c(1:4)], lty="dashed", col="green")
lines(alpha4-2*alpha.se4~SR_data$brood_year[-c(1:4)], lty="dashed", col="green")

Code
autoplot(m4, plot.type = "xtT")

Model Diagnostics

Also plot appropriate model diagnostics.

Code
plot(m4)

plot type =  fitted.ytT  Observations with fitted values
Hit <Return> to see next plot (q to exit): 

plot type = xtT Estimated states
Hit <Return> to see next plot (q to exit): 

plot type = model.resids.ytt1
Hit <Return> to see next plot (q to exit): 

plot type = std.model.resids.ytT
Hit <Return> to see next plot (q to exit): 

plot type = std.state.resids.xtT
Hit <Return> to see next plot (q to exit): 

plot type = qqplot.std.model.resids.ytt1
Hit <Return> to see next plot (q to exit): 

plot type = qqplot.std.state.resids.xtT
Hit <Return> to see next plot (q to exit): 

plot type = acf.std.model.resids.ytt1

Task 5: Best Model Forecasts

Model comparison

Code
#AIC value
m1$AICc
[1] 111.6888
Code
m2$AICc  #AICc is within a single point.
[1] 112.6731
Code
m3$AICc  # getting worse
[1] 117.8998
Code
m4$AICc
[1] 117.1048
  1. Based on AICc, which of the models above is the most parsimonious? Is it well behaved (i.e., are the model assumptions met)? Plot the model forecasts for the best model. Is this a good forecast model?

The best model is our first model with just a time varying intercept. However, the model with a static effect of spawners had almost equal support. The model is well behaved and all model assumptions are met.

Model forecasts

Code
fr1 <- predict(m1, type="ytT", n.ahead=1)
plot(fr1)

Task 6: Other Environmental Covariates

As our final task, we considered the effect of sea surface tmeperature on the time-varying productivity of Kvichak salmon.

Code
bb_data <- readRDS(here::here("Lab-1", "Data_Images", "bristol_bay_data_plus_covariates.rds"))

sst <- bb_data %>% 
  filter(system == "Kvichak", brood_yr <= 2005)%>%
  select(brood_yr, env_sst)%>%
  group_by(brood_yr)%>%
  summarize(sst = mean(env_sst))
  
spawn1957 <- spawn[-1]
ratio1957 <- ratio[-1]
sst1957 <- t(sst$sst)

m <- 3                     #number of parameters in process 
TT <- length(spawn1957)      #number of data points

B <-  diag(m)                         #"identity"
U <-  matrix(0, nrow = m, ncol = 1)   #"zero"
Q <- matrix(list("q.alpha", 0,0,              
                 0, 0,0,  #Do we want beta to vary now?
                 0,0,"q.sst"), nrow = 3, byrow = TRUE)  # to have characters and numbers in same matrix use a list
Z <- array(NA, c(1, m, TT))  ## NxMxT; empty for now
Z[1,1,] <- rep(1, TT)        ## Nx1; 1's for intercept
Z[1,2,] <- spawn1957           ## Nx1; predictor variable spawners
Z[1,3,] <-  sst1957            ## Nx1; predictor PDO summer
A = matrix(0)                #"zero"
R <-  matrix("r")

inits_list2 <- list(x0 = matrix(c(0,0,0), nrow = m))     
mod_list2 <- list(B = B, U = U, Q = Q, Z = Z, A = A, R = R)


# run model
m5 <- MARSS(ratio1957, mod_list2, inits = inits_list2)
Success! abstol and log-log tests passed at 144 iterations.
Alert: conv.test.slope.tol is 0.5.
Test with smaller values (<0.1) to ensure convergence.

MARSS fit is
Estimation method: kem 
Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
Estimation converged in 144 iterations. 
Log-likelihood: -48.97244 
AIC: 109.9449   AICc: 112.3449   
 
           Estimate
R.r        1.60e-01
Q.q.alpha  3.73e-02
Q.q.sst    7.65e-03
x0.X1      2.48e+00
x0.X2     -5.17e-06
x0.X3     -3.75e-01
Initial states (x0) defined at t=0

Standard errors have not been calculated. 
Use MARSSparamCIs to compute CIs and bias estimates.
Code
m5$AICc
[1] 112.3449

\(\alpha_t\), \(\delta_t\) plots and the AICc.

What is the mean level of productivity? Plot the ts of \(\delta_t\) and note the AICc for this model.

Code
alpha_m5 <- as.numeric(m5$states[1,]) 
alpha_m5_se <- as.numeric(m5$states.se[1,])

sst_m5 <- as.numeric(m5$states[3,])
sst_m5_se <- as.numeric(m5$states.se[3,])

mean_produc_m5 <- mean(alpha_m5)

# Alpha plot
plot(alpha_m5~sst$brood_yr,type='l', ylim = c(0,5),xlim= c(1950, 2005))
lines((alpha_m5+2*alpha_m5_se)~sst$brood_yr, lty="dashed", col="red")
lines(alpha_m5-2*alpha_m5_se~sst$brood_yr, lty="dashed", col="red")
text(1960, 0.4, "mean producivity = 2.48")

Code
# Delta plot
plot(sst_m5~sst$brood_yr,type='l',ylim = c(-1.1, 0.3), xlim= c(1950, 2005))
lines((sst_m5+2*sst_m5_se)~sst$brood_yr, lty="dashed", col="red")
lines(sst_m5-2*sst_m5_se~sst$brood_yr, lty="dashed", col="red")

Code
#AIC value
m5$AICc
[1] 112.3449

The mean level of productivity in this model was 2.48. We found that this model did not test higher than the reduced Ricker model.

Model Diagnostics

Also plot appropriate model diagnostics.

Code
plot(m5)
MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.

plot type =  fitted.ytT  Observations with fitted values
Hit <Return> to see next plot (q to exit): 

plot type = xtT Estimated states
Hit <Return> to see next plot (q to exit): 

plot type = model.resids.ytt1
Hit <Return> to see next plot (q to exit): 

plot type = std.model.resids.ytT
Hit <Return> to see next plot (q to exit): 

plot type = std.state.resids.xtT
Hit <Return> to see next plot (q to exit): 

plot type = qqplot.std.model.resids.ytt1
Hit <Return> to see next plot (q to exit): 

plot type = qqplot.std.state.resids.xtT
Hit <Return> to see next plot (q to exit): 

plot type = acf.std.model.resids.ytt1

Discussion

We found that the Kvichak sockeye spawner recruit time series was best explained by the simplest model with just a time varying intercept. Of the three covariates (summer pdo, winter pdo and SST) we tested, the model with SST had the lowest AIC but not lower than the simplest model. We found that the effect of summer and winter pdo were not time varying. This might be because a time varying intercept explained most of the variance.

Team contributions

Dylan wrote the original code for reduced ricker and full ricker models. Maria wrote the code for the PDO models. Liz wrote the code for the SST and coded the models in matrix form. All team members contributed to writing and organization of the lab document.