MARSS One-Step-Ahead Residuals
MARSSresiduals_tt1.Rd
Calculates the standardized (or auxiliary) one-step-ahead residuals, aka the innovations residuals and their variance. Not exported. Access this function with MARSSresiduals(object, type="tt1")
. To get the residuals as a data frame in long-form, use residuals(object, type="tt1")
.
Arguments
- object
An object of class
marssMLE
.- method
Algorithm to use. Currently only "SS".
- normalize
TRUE/FALSE See details.
- silent
If TRUE, don't print inversion warnings.
- fun.kf
Can be ignored. This will change the Kalman filter/smoother function from the value in object$fun.kf if desired.
Value
A list with the following components
- model.residuals
The the observed one-step-ahead model residuals: data minus the model predictions conditioned on the data \(t=1\) to \(t-1\). These are termed innovations. A n x T matrix. NAs will appear where the data are missing.
- state.residuals
The one-step-ahead state residuals \( \mathbf{x}_{t+1}^{t+1} - \mathbf{B}\mathbf{x}_{t}^t - \mathbf{u} \) . Note, state residual at time \(t\) is the transition from time \(t=t\) to \(t+1\).
- residuals
The residuals conditioned on the observed data up to time \(t-1\). Returned as a (n+m) x T matrix with
model.residuals
in rows 1 to n andstate.residuals
in rows n+1 to n+m. NAs will appear in rows 1 to n in the places where data are missing.- var.residuals
The joint variance of the one-step-ahead residuals. Returned as a n+m x n+m x T matrix.
- std.residuals
The Cholesky standardized residuals as a n+m x T matrix. This is
residuals
multiplied by the inverse of the lower triangle of the Cholesky decomposition ofvar.residuals
. The model standardized residuals associated with the missing data are replaced with NA.- mar.residuals
The marginal standardized residuals as a n+m x T matrix. This is
residuals
multiplied by the inverse of the diagonal matrix formed by the square-root of the diagonal ofvar.residuals
. The model marginal residuals associated with the missing data are replaced with NA.- bchol.residuals
The Block Cholesky standardized residuals as a (n+m) x T matrix. This is
model.residuals
multiplied by the inverse of the lower triangle of the Cholesky decomposition ofvar.residuals[1:n,1:n,]
andstate.residuals
multiplied by the inverse of the lower triangle of the Cholesky decomposition ofvar.residuals[(n+1):(n+m),(n+1):(n+m),]
.- E.obs.residuals
The expected value of the model residuals conditioned on the observed data \(t=1\) to \(t-1\). Returned as a n x T matrix. Because all the data at time \(t\) are unobserved for the purpose of estimation (since conditioning is from \(t=1\) to \(t-1\)), this will be all 0s (unlike the case where we condition on the data from \(t=1\) to \(T\) or to \(t\)). This and
var.obs.residuals
are included for completeness since they are returned forMARSSresiduals.tT()
, but they are not relevant for one-step-ahead residuals. See the discussion there.- var.obs.residuals
For one-step-ahead residuals, this will be the same as the 1:n, 1:n upper diagonal block in
var.residuals
since none of the \(t\) data affect the residuals at time \(t\) (the model residuals are conditioned only on the data up to \(t-1\)). This is different for smoothation residuals which are conditioned on the data from \(t=1\) to \(T\). This andE.obs.residuals
are included for completeness since they are returned forMARSSresiduals.tT()
, but they are not relevant for one-step-ahead residuals. See the discussion there. Note, also included as a code check. They are computed differently, butvar.obs.residuals
andvar.residuals
should always be the same.- msg
Any warning messages. This will be printed unless
object$control$trace = -1
(suppress all error messages).
Details
This function returns the conditional expected value (mean) and variance of the one-step-ahead residuals. 'conditional' means in this context, conditioned on the observed data up to time \(t-1\) and a set of parameters.
Model residuals
\(\mathbf{v}_t\) is the difference between the data and the predicted data at time \(t\) given \(\mathbf{x}_t\):
$$ \mathbf{v}_t = \mathbf{y}_t - \mathbf{Z} \mathbf{x}_t - \mathbf{a} - \mathbf{D}\mathbf{d}_t$$
The observed model residuals \(\hat{\mathbf{v}}_t\) are the difference between the observed data and the predicted data at time \(t\) using the fitted model. MARSSresiduals.tt1
fits the model using the data up to time \(t-1\). So
$$ \hat{\mathbf{v}}_t = \mathbf{y}_t - \mathbf{Z}\mathbf{x}_t^{t-1} - \mathbf{a} - \mathbf{D}\mathbf{d}_t$$
where \(\mathbf{x}_t^{t-1}\) is the expected value of \(\mathbf{X}_t\) conditioned on the data from $t=1$ to \(t-1\) from the Kalman filter. \(\mathbf{y}_t\) are your data and missing values will appear as NA.
State residuals
\(\mathbf{w}_{t+1}\) are the difference between the state at time \(t+1\) and the expected value of the state at time \(t+1\) given the state at time \(t\):
$$ \mathbf{w}_{t+1} = \mathbf{x}_{t+1} - \mathbf{B} \mathbf{x}_{t} - \mathbf{u} - \mathbf{C}\mathbf{c}_{t+1}$$
The estimated state residuals \(\hat{\mathbf{w}}_{t+1}\) are the difference between estimate of \(\mathbf{x}_{t+1}\) minus the estimate using \(\mathbf{x}_{t}\).
$$ \hat{\mathbf{w}}_{t+1} = \mathbf{x}_{t+1}^{t+1} - \mathbf{B}\mathbf{x}_{t}^t - \mathbf{u} - \mathbf{C}\mathbf{c}_{t+1}$$
where \(\mathbf{x}_{t+1}^{t+1}\) is the Kalman filter estimate of the states at time \(t+1\) conditioned on the data up to time \(t+1\) and \(\mathbf{x}_{t}^t\) is the Kalman filter estimate of the states at time \(t\) conditioned on the data up to time \(t\).
The estimated state residuals \(\mathbf{w}_{t+1}\) are returned in state.residuals
and rows \(n+1\) to \(n+m\) of residuals
. state.residuals[,t]
is \(\mathbf{w}_{t+1}\) (notice time subscript difference). There are no NAs in the estimated state residuals (except for the last time step) as an estimate of the state exists whether or not there are associated data.
res1
and res2
in the code below will be the same.
dat <- t(harborSeal)[2:3,]
TT <- ncol(dat)
fit <- MARSS(dat)
B <- coef(fit, type="matrix")$B
U <- coef(fit, type="matrix")$U
xt <- MARSSkfss(fit)$xtt[,1:(TT-1)] # t 1 to TT-1
xtp1 <- MARSSkfss(fit)$xtt[,2:TT] # t 2 to TT
res1 <- xtp1 - B %*% xt - U %*% matrix(1,1,TT-1)
res2 <- MARSSresiduals(fit, type="tt1")$state.residuals
Joint residual variance
In a state-space model, \(\mathbf{X}\) and \(\mathbf{Y}\) are stochastic, and the model and state residuals are random variables \(\hat{\mathbf{V}}_t\) and \(\hat{\mathbf{W}}_{t+1}\). The joint distribution of \(\hat{\mathbf{V}}_{t}, \hat{\mathbf{W}}_{t+1}\) is the distribution across all the different possible data sets that our MARSS equations with parameters \(\Theta\) might generate. Denote the matrix of \(\hat{\mathbf{V}}_{t}, \hat{\mathbf{W}}_{t+1}\), as \(\widehat{\mathcal{E}}_{t}\). That distribution has an expected value (mean) and variance:
$$ \textrm{E}[\widehat{\mathcal{E}}_t] = 0; \textrm{var}[\widehat{\mathcal{E}}_t] = \hat{\Sigma}_t $$
Our observed residuals residuals
are one sample from this distribution.
To standardize the observed residuals, we will use \( \hat{\Sigma}_t \). \( \hat{\Sigma}_t \) is returned in var.residuals
. Rows/columns 1 to \(n\) are the conditional variances of the model residuals and rows/columns \(n+1\) to \(n+m\) are the conditional variances of the state residuals. The off-diagonal blocks are the covariances between the two types of residuals. For one-step-ahead residuals (unlike smoothation residuals MARSSresiduals.tT), the covariance is zero.
var.residuals
returned by this function is the conditional variance of the residuals conditioned on the data up to \(t-1\) and the parameter set \(\Theta\). The conditional variance for the model residuals is
$$ \hat{\Sigma}_t = \mathbf{R}+\mathbf{Z}_t \mathbf{V}_t^{t-1} \mathbf{Z}_t^\top $$
where \(\mathbf{V}_t^{t-1}\) is the variance of \(\mathbf{X}_t\) conditioned on the data up to time \(t-1\). This is returned by MARSSkf
in Vtt1
. The innovations variance is also returned in Sigma
from MARSSkf
and are used in the innovations form of the likelihood calculation.
Standardized residuals
std.residuals
are Cholesky standardized residuals. These are the residuals multiplied by the inverse of the lower triangle of the Cholesky decomposition of the variance matrix of the residuals:
$$ \hat{\Sigma}_t^{-1/2} \hat{\mathbf{v}}_t$$
These residuals are uncorrelated unlike marginal residuals.
The interpretation of the Cholesky standardized residuals is not straight-forward when the \(\mathbf{Q}\) and \(\mathbf{R}\) variance-covariance matrices are non-diagonal. The residuals which were generated by a non-diagonal variance-covariance matrices are transformed into orthogonal residuals in \(\textrm{MVN}(0,\mathbf{I})\) space. For example, if v is 2x2 correlated errors with variance-covariance matrix R. The transformed residuals (from this function) for the i-th row of v is a combination of the row 1 effect and the row 1 effect plus the row 2 effect. So in this case, row 2 of the transformed residuals would not be regarded as solely the row 2 residual but rather how different row 2 is from row 1, relative to expected. If the errors are highly correlated, then the Cholesky standardized residuals can look rather non-intuitive.
mar.residuals
are the marginal standardized residuals. These are the residuals multiplied by the inverse of the diagonal matrix formed from the square-root of the diagonal of the variance matrix of the residuals:
$$ \textrm{dg}(\hat{\Sigma}_t)^{-1/2} \hat{\mathbf{v}}_t$$, where 'dg(A)' is the square matrix formed from the diagonal of A, aka diag(diag(A))
. These residuals will be correlated if the variance matrix is non-diagonal.
The Block Cholesky standardized residuals are like the Cholesky standardized residuals except that the full variance-covariance matrix is not used, only the variance-covariance matrix for the model or state residuals (respectively) is used for standardization. For the one-step-ahead case, the model and state residuals are independent (unlike in the smoothations case) thus the Cholesky and Block Cholesky standardized residuals will be identical (unlike in the smoothations case).
Normalized residuals
If normalize=FALSE
, the unconditional variance of \(\mathbf{V}_t\) and \(\mathbf{W}_t\) are \(\mathbf{R}\) and \(\mathbf{Q}\) and the model is assumed to be written as
$$\mathbf{y}_t = \mathbf{Z} \mathbf{x}_t + \mathbf{a} + \mathbf{v}_t$$
$$\mathbf{x}_t = \mathbf{B} \mathbf{x}_{t-1} + \mathbf{u} + \mathbf{w}_t$$
If normalize=TRUE, the model is assumed to be written
$$\mathbf{y}_t = \mathbf{Z} \mathbf{x}_t + \mathbf{a} + \mathbf{H}\mathbf{v}_t$$
$$\mathbf{x}_t = \mathbf{B} \mathbf{x}_{t-1} + \mathbf{u} + \mathbf{G}\mathbf{w}_t$$
with the variance of \(\mathbf{V}_t\) and \(\mathbf{W}_t\) equal to \(\mathbf{I}\) (identity).
MARSSresiduals
returns the residuals defined as in the first equations. To get the residuals defined as Harvey et al. (1998) define them (second equations), then use normalize=TRUE
. In that case the unconditional variance of residuals will be \(\mathbf{I}\) instead of \(\mathbf{Q}\) and \(\mathbf{R}\). Note, that the normalized residuals are not the same as the standardized residuals. In former, the unconditional residuals have a variance of \(\mathbf{I}\) while in the latter it is the conditional residuals that have a variance of \(\mathbf{I}\).
References
R. H. Shumway and D. S. Stoffer (2006). Section on the calculation of the likelihood of state-space models in Time series analysis and its applications. Springer-Verlag, New York.
Holmes, E. E. 2014. Computation of standardized residuals for (MARSS) models. Technical Report. arXiv:1411.0045.
Examples
dat <- t(harborSeal)
dat <- dat[c(2,11),]
fit <- MARSS(dat)
#> Success! abstol and log-log tests passed at 26 iterations.
#> Alert: conv.test.slope.tol is 0.5.
#> Test with smaller values (<0.1) to ensure convergence.
#>
#> MARSS fit is
#> Estimation method: kem
#> Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
#> Estimation converged in 26 iterations.
#> Log-likelihood: 11.74016
#> AIC: -9.480311 AICc: -6.3692
#>
#> Estimate
#> R.diag 0.0115
#> U.X.CoastalEstuaries 0.0613
#> U.X.OR.NorthCoast 0.0510
#> Q.(X.CoastalEstuaries,X.CoastalEstuaries) 0.0147
#> Q.(X.OR.NorthCoast,X.OR.NorthCoast) 0.0122
#> x0.X.CoastalEstuaries 7.3823
#> x0.X.OR.NorthCoast 6.2707
#> Initial states (x0) defined at t=0
#>
#> Standard errors have not been calculated.
#> Use MARSSparamCIs to compute CIs and bias estimates.
#>
MARSSresiduals(fit, type="tt1")$std.residuals
#> [,1] [,2] [,3] [,4] [,5]
#> CoastalEstuaries -0.05418676 -0.206286276 0.566365934 1.005768 NA
#> OR.NorthCoast NA NA -0.001882139 NA NA
#> X.CoastalEstuaries -0.20628628 0.566365934 1.005767860 0.000000 0.2204673
#> X.OR.NorthCoast 0.00000000 -0.001882139 0.000000000 0.000000 0.0000000
#> [,6] [,7] [,8] [,9] [,10]
#> CoastalEstuaries 0.2204673 2.0405379 1.2425972 -0.7982010 -0.8746660
#> OR.NorthCoast NA NA -0.1395806 1.1554718 0.1779561
#> X.CoastalEstuaries 2.0405379 1.2425972 -0.7982010 -0.8746660 1.3133883
#> X.OR.NorthCoast 0.0000000 -0.1395806 1.1554718 0.1779561 0.3438440
#> [,11] [,12] [,13] [,14] [,15]
#> CoastalEstuaries 1.3133883 -1.1010233 1.7849809 -0.3351368 -0.71142906
#> OR.NorthCoast 0.3438440 -0.8332411 1.6166181 0.6909545 1.09517141
#> X.CoastalEstuaries -1.1010233 1.7849809 -0.3351368 -0.7114291 0.00000000
#> X.OR.NorthCoast -0.8332411 1.6166181 0.6909545 1.0951714 0.03597429
#> [,16] [,17] [,18] [,19] [,20]
#> CoastalEstuaries NA 0.5726369 -0.76775282 -0.31659312 -2.3132481
#> OR.NorthCoast 0.03597429 -0.9304752 1.64162505 -0.08266883 -0.6865966
#> X.CoastalEstuaries 0.57263695 -0.7677528 -0.31659312 -2.31324808 -0.4943444
#> X.OR.NorthCoast -0.93047525 1.6416251 -0.08266883 -0.68659660 -1.3199941
#> [,21] [,22] [,23] [,24] [,25]
#> CoastalEstuaries -0.49434441 0.05447392 0.01643296 NA -0.8768965
#> OR.NorthCoast -1.31999410 -0.07484734 NA 0.2166126 -2.1429904
#> X.CoastalEstuaries 0.05447392 0.01643296 0.00000000 -0.8768965 0.0000000
#> X.OR.NorthCoast -0.07484734 0.00000000 0.21661261 -2.1429904 -1.5204468
#> [,26] [,27] [,28] [,29] [,30]
#> CoastalEstuaries NA NA NA NA NA
#> OR.NorthCoast -1.5204468 -0.8263151 0.9151561 0.7476442 NA
#> X.CoastalEstuaries 0.0000000 0.0000000 0.0000000 0.0000000 NA
#> X.OR.NorthCoast -0.8263151 0.9151561 0.7476442 0.0000000 NA
residuals(fit, type="tt1")
#> type .rownames name t value .fitted .resids .sigma
#> 1 ytt1 CoastalEstuaries model 1 7.434848 7.443613 -0.0087655032 0.1617647
#> 2 ytt1 CoastalEstuaries model 2 7.462789 7.500042 -0.0372528292 0.1805880
#> 3 ytt1 CoastalEstuaries model 3 7.641084 7.537255 0.1038290197 0.1833250
#> 4 ytt1 CoastalEstuaries model 4 7.851661 7.666950 0.1847108729 0.1836516
#> 5 ytt1 CoastalEstuaries model 5 NA 7.850112 NA NA
#> 6 ytt1 CoastalEstuaries model 6 7.959975 7.911459 0.0485152957 0.2200567
#> 7 ytt1 CoastalEstuaries model 7 8.391176 8.009815 0.3813609196 0.1868923
#> 8 ytt1 CoastalEstuaries model 8 8.555837 8.327130 0.2287064413 0.1840552
#> 9 ytt1 CoastalEstuaries model 9 8.392990 8.539648 -0.1466584134 0.1837362
#> 10 ytt1 CoastalEstuaries model 10 8.343554 8.504229 -0.1606755891 0.1836994
#> 11 ytt1 CoastalEstuaries model 11 8.700847 8.459584 0.2412630005 0.1836951
#> 12 ytt1 CoastalEstuaries model 12 8.477828 8.680081 -0.2022520356 0.1836946
#> 13 ytt1 CoastalEstuaries model 13 8.935904 8.608012 0.3278912699 0.1836945
#> 14 ytt1 CoastalEstuaries model 14 8.824089 8.885652 -0.0615627982 0.1836945
#> 15 ytt1 CoastalEstuaries model 15 8.775704 8.906390 -0.1306856341 0.1836945
#> 16 ytt1 CoastalEstuaries model 16 NA 8.881530 NA NA
#> 17 ytt1 CoastalEstuaries model 17 9.068892 8.942877 0.1260149752 0.2200609
#> 18 ytt1 CoastalEstuaries model 18 8.956866 9.100354 -0.1434873391 0.1868926
#> 19 ytt1 CoastalEstuaries model 19 9.007122 9.065393 -0.0582706082 0.1840552
#> 20 ytt1 CoastalEstuaries model 20 8.663196 9.088224 -0.4250273931 0.1837362
#> 21 ytt1 CoastalEstuaries model 21 8.778326 8.869137 -0.0908107534 0.1836994
#> 22 ytt1 CoastalEstuaries model 22 8.880586 8.870579 0.0100065927 0.1836951
#> 23 ytt1 CoastalEstuaries model 23 8.941545 8.938527 0.0030186458 0.1836946
#> 24 ytt1 CoastalEstuaries model 24 NA 9.001865 NA NA
#> 25 ytt1 CoastalEstuaries model 25 8.870242 9.063212 -0.1929705976 0.2200609
#> 26 ytt1 CoastalEstuaries model 26 NA 8.977353 NA NA
#> 27 ytt1 CoastalEstuaries model 27 NA 9.038700 NA NA
#> 28 ytt1 CoastalEstuaries model 28 NA 9.100047 NA NA
#> 29 ytt1 CoastalEstuaries model 29 NA 9.161394 NA NA
#> 30 ytt1 CoastalEstuaries model 30 NA 9.222741 NA NA
#> 31 ytt1 OR.NorthCoast model 1 NA 6.321668 NA NA
#> 32 ytt1 OR.NorthCoast model 2 NA 6.372664 NA NA
#> 33 ytt1 OR.NorthCoast model 3 6.423247 6.423659 -0.0004124727 0.2191510
#> 34 ytt1 OR.NorthCoast model 4 NA 6.474341 NA NA
#> 35 ytt1 OR.NorthCoast model 5 NA 6.525337 NA NA
#> 36 ytt1 OR.NorthCoast model 6 NA 6.576333 NA NA
#> 37 ytt1 OR.NorthCoast model 7 NA 6.627329 NA NA
#> 38 ytt1 OR.NorthCoast model 8 6.638568 6.678324 -0.0397565172 0.2848283
#> 39 ytt1 OR.NorthCoast model 9 6.906755 6.695192 0.2115631430 0.1830968
#> 40 ytt1 OR.NorthCoast model 10 6.916715 6.885274 0.0314412894 0.1766801
#> 41 ytt1 OR.NorthCoast model 11 7.016610 6.956143 0.0604665822 0.1758547
#> 42 ytt1 OR.NorthCoast model 12 6.898715 7.045150 -0.1464351316 0.1757416
#> 43 ytt1 OR.NorthCoast model 13 7.288244 7.004163 0.2840818171 0.1757260
#> 44 ytt1 OR.NorthCoast model 14 7.355002 7.233585 0.1214171679 0.1757238
#> 45 ytt1 OR.NorthCoast model 15 7.553287 7.360839 0.1924473895 0.1757235
#> 46 ytt1 OR.NorthCoast model 16 7.539027 7.532706 0.0063215283 0.1757235
#> 47 ytt1 OR.NorthCoast model 17 7.424165 7.587672 -0.1635063539 0.1757235
#> 48 ytt1 OR.NorthCoast model 18 7.824446 7.535974 0.2884720744 0.1757235
#> 49 ytt1 OR.NorthCoast model 19 7.753624 7.768150 -0.0145268555 0.1757235
#> 50 ytt1 OR.NorthCoast model 20 7.689371 7.810022 -0.1206511466 0.1757235
#> 51 ytt1 OR.NorthCoast model 21 7.553287 7.785241 -0.2319539627 0.1757235
#> 52 ytt1 OR.NorthCoast model 22 7.677400 7.690553 -0.0131524352 0.1757235
#> 53 ytt1 OR.NorthCoast model 23 NA 7.733288 NA NA
#> 54 ytt1 OR.NorthCoast model 24 7.829233 7.784284 0.0449488452 0.2075080
#> 55 ytt1 OR.NorthCoast model 25 7.484369 7.868240 -0.3838710165 0.1791287
#> 56 ytt1 OR.NorthCoast model 26 7.404888 7.672761 -0.2678732130 0.1761806
#> 57 ytt1 OR.NorthCoast model 27 7.409742 7.554997 -0.1452549981 0.1757865
#> 58 ytt1 OR.NorthCoast model 28 7.675546 7.514724 0.1608223910 0.1757322
#> 59 ytt1 OR.NorthCoast model 29 7.798113 7.666733 0.1313795472 0.1757247
#> 60 ytt1 OR.NorthCoast model 30 NA 7.800245 NA NA
#> .std.resids
#> 1 -0.054186758
#> 2 -0.206286276
#> 3 0.566365934
#> 4 1.005767860
#> 5 NA
#> 6 0.220467252
#> 7 2.040537901
#> 8 1.242597244
#> 9 -0.798201023
#> 10 -0.874666007
#> 11 1.313388330
#> 12 -1.101023270
#> 13 1.784980949
#> 14 -0.335136785
#> 15 -0.711429056
#> 16 NA
#> 17 0.572636946
#> 18 -0.767752824
#> 19 -0.316593118
#> 20 -2.313248083
#> 21 -0.494344408
#> 22 0.054473923
#> 23 0.016432959
#> 24 NA
#> 25 -0.876896499
#> 26 NA
#> 27 NA
#> 28 NA
#> 29 NA
#> 30 NA
#> 31 NA
#> 32 NA
#> 33 -0.001882139
#> 34 NA
#> 35 NA
#> 36 NA
#> 37 NA
#> 38 -0.139580626
#> 39 1.155471842
#> 40 0.177956078
#> 41 0.343844019
#> 42 -0.833241083
#> 43 1.616618091
#> 44 0.690954477
#> 45 1.095171415
#> 46 0.035974293
#> 47 -0.930475250
#> 48 1.641625053
#> 49 -0.082668833
#> 50 -0.686596598
#> 51 -1.319994101
#> 52 -0.074847339
#> 53 NA
#> 54 0.216612615
#> 55 -2.142990433
#> 56 -1.520446816
#> 57 -0.826315058
#> 58 0.915156126
#> 59 0.747644217
#> 60 NA