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Topics for today

What is the frequency domain?

Fourier transforms

Spectral analysis

Wavelets
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Time domain

We having been examining changes in  over timext
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Time domain

We can think of this as comparing changes in amplitude (displacement) with
time
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Frequency domain

Today we’ll consider how amplitude changes with frequency
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Jean-Baptiste Fourier (1768 - 1830)

French mathematician & physicist best known for his studies of heat transfer

First described what we now call the “greenhouse effect”
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Solving hard problems

Solving the heat equation involves solving partial differential equations
conditional on some boundary conditions

Problem

really hard

⏐
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Solution
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Fourier’s approach

Find  and , such thatf (t) (t)f ̂ 

Problem

really hard

⏐

↓

⏐
⏐
⏐
⏐
⏐
⏐
⏐

Solution

− →−
f(t)

← −−
(t)f ̂ 

Transformed problem

much easier

⏐

↓
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⏐
⏐
⏐
⏐
⏐
⏐

Transformed solution
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Fourier series

Complex periodic functions can be written as infinite sums of sine waves

where

 is the wave number (index)

 is the amplitude of wave 

 is the fundamental frequency

 is the phase shift

f (t) = + sin(2π kt + )a0 ∑
k=1

∞

ak f0 pk

k

ak k

f0

pk
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Fourier series

A finite example

f (t) = sin(2πkt + )∑
k=1

5
1

k
k2

10/63



Fourier series
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Fourier series
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Fourier series

Here’s an animated example from Wikipedia
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https://upload.wikimedia.org/wikipedia/commons/7/72/Fourier_transform_time_and_frequency_domains_%28small%29.gif


Fourier transform

We can make use of Euler’s formula

and write the Fourier transform of  as

where  is the frequency

cos(2πk) + i sin(2πk) = ei2πk

f (t)

f (t) = (k)   dk∫
∞

−∞

f ̂  ei2πtk

k
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Discrete Fourier transform

Fourier transform

=  fk ∑
n=0

N−1

xt e−i2πnk
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Fourier transforms in R

R uses what’s known as Fast Fourier transform via fft(), which returns the
amplitude at each frequency

ft <- fft(xt)
## often normalize by the length
ft <- fft(xt) / length(xt)
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Fourier represention of our { }xt
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Discrete Inverse Fourier transform

Fourier transform

Inverse

=  fk ∑
n=0

N−1

xt e−i2πnk

=  xt ∑
k=0

N−1

fk ei2πnk
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Inverse Fourier transforms in R

 i <- complex(1, re = 0, im = 1)
xx <- rep(NA, TT)
kk <- seq(TT) - 1
## Inverse Fourier transform
## ft <- fft(xt)
for(t in kk) {
  xx[t+1] <- sum(ft * exp(i*2*pi*kk*t/TT))
}
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Original  & our inverse transform{ }xt
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Inverse Fourier transforms in R

ift <- fft(ft, inverse = TRUE)
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Original  & R’s inverse transform{ }xt
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Spectral analysis



Spectral analysis

Spectral analysis refers to a general way of decomposing time series into their
constituent frequencies
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Spectral analysis

Consider a linear regression model for  with various sines and cosines as
predictors

{ }xt

= + cos(2π kt/n) + sin(2π kt/n)xt a0 ∑
k=1

n/2−1

ak f0 bk f0
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Periodogram

The periodogram measures the contributions of each frequency  to k { }xt

= +Pk a2
k b2

k
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Estimate the periodogram in R

spectrum(xt, log = "on")
spectrum(xt, log = "off")
spectrum(xt, log = "dB")
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Periodogram for our 

spectrum(xt, log = "dB")

{ }xt
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Periodogram for our 

Density on natural scale & frequency in cycles per time

{ }xt
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Spectral density estimation via AR(p)

For an AR(p) process

The spectral density is

= + + ⋯ + +xt ϕ1xt−1 ϕ2xt−2 ϕpxt−p et

S(f , , … , , ) =ϕ1 ϕp σ2 Δtσ2

|1 − ∑p

k=1
ϕke−i2πfkΔt |2
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Limits to spectral analysis

Spectral analysis works well for

1. stationary time series

2. identifying periodic signals corrupted by noise
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Limits to spectral analysis

Spectral analysis works well for

But…

1. stationary time series

2. identifying periodic signals corrupted by noise

1. it’s an inconsistent estimator for most real data sets

2. it’s generally biased
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Wavelets



Shifting frequencies

What if the frequency changes over time?
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Wavelets

For non-stationary time series we can use so-called wavelets

A wavelet is a function that is localized in time & frequency
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Graphical forms for decomposition
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Graphical form for decomposition
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What is a wavelet?

Formally, a wavelet  is defined as

where  determines its position &  determines its frequency

ψ

(t) = ψ ( )ψσ,τ

1

|σ|‾ ‾‾√

t − τ

σ

τ σ
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Graphical form for decomposition
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Properties of wavelets

It goes up and down

It has a finite sum

ψ(t) dt = 0∫
∞

−∞

|ψ(t)| dt < ∞∫
∞

−∞
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How are wavelets defined?

In terms of scaling functions that describe

1. Dilations 

2. Translations 

              ψ(t) → ψ(2t)

         ψ(t) → ψ(t − 1)
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How are wavelets defined?

More generally,

where

 is the dilation index

 is the translation index

and

 is a normalization constant

(t) = ψ( t − k)ψj,k 2j/2 2j

j

k

2j/2
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Wavelets in practice

There are many options for , but we’ll use scaling functions and define

where the  are filter coefficients*

*Note that  gets “smoother” as  increases

ψ(t)

ψ(t) = ψ(2x − k)∑
k=0

K

ck

ck

ψ(t) K
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Haar’s scaling function

Simple, but commonly used, where 

The only function that satisfies this is:

K = 1;   = 1;   = 1c0 c1

ψ(t) = ψ(2t − k)∑
k=0

K

ck

∥
⇓

ψ(t) = ψ(2t) + ψ(2t − 1)

ψ(t)

ψ(t)

= 1 if 0 ≤ t ≤ 1

= 0 otherwise
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Haar’s scaling function
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Haar’s scaling function

In terms of the dilation

and translation

ψ(2t)

ψ(2t)

= 1 if 0 ≤ t ≤ 0.5

= 0 otherwise

ψ(2t − 1)

ψ(2t − 1)

= 1 if 0.5 ≤ t ≤ 1

= 0 otherwise
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Haar’s scaling function (father)
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Haar’s mother wavelet

Wavelets are created via differencing of scaling functions

where  creates the difference

ψ(t) = (−1 ψ(2t − k)∑
k=0

1

)kck

(−1)k
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Haar’s mother wavelet

49/63



Family of Haar’s wavelets

So-called “child” wavelets are created via dilation & translation

The mother Haar wavelet has 

(t) = ψ( t − k)ψj,k 2j/2 2j

j = 0
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Family of Haar’s wavelets

So-called “child” wavelets are created via dilation & translation

The basic Haar wavelet has 

Setting  yields a daughter

(t) = ψ( t − k)ψj,k 2j/2 2j

j = 0

j = 1

(t) = ψ(2t − k)ψj,k 2‾√
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Haar’s daughter wavelet

Recall that  creates the difference

ψ(t) = (−1 ψ(2t − k)∑
k=0

1

)kck 2‾√

(−1)k
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A daughter wavelet of Haar’s
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Other wavelets

There are many forms of wavelets, many of which were developed in the past
50 years
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Morlet



Mexican Hat



Who does this?

Wavelet analysis is used widely in audio & video compression
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JPEG



Estimating wavelet transforms in R

We’ll use the WaveletComp package, which uses the Morlet wavelet

We’ll also use the L Washington temperature data from the MARSS package

library(WaveletComp)
## L WA temperature data
tmp <- MARSS::lakeWAplanktonTrans[,"Temp"]
## WaveletComp needs data as df
dat <- data.frame(tmp = tmp)
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Estimating wavelet transforms in R

Use analyze.wavelet() to estimate the wavelet transform

w_est <- analyze.wavelet(dat, "tmp",        ## need both df & colname
                         loess.span = 0,    ## no de-trending
                         dt = 1/12,         ## monthly sampling
                         lowerPeriod = 1/6, ## default = 2*dt
                         n.sim = 100,
                         verbose = FALSE)

## 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |=                                                                     |   1%
  |                                                                            
  |=                                                                     |   2%
  |                                                                            
  |==                                                                    |   3%
  |                                                                            
  |===                                                                   |   4%
  |                                                                            
  |====                                                                  |   5%
  |                                                                            
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Estimating wavelets in R

Use wt.image() to plot the spectrum
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Inverse wavelet transforms

Involves integral calculus

f (t) = < f (t), (t) > (t)db
1

Cψ
∫a ∫b

ψa,b ψa,b

da

a2
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Inverse wavelet transforms in R

Use reconstruct() to get estimate of original time series
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