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Overview of today's material

» Approaches for model selection
» Cross validation
» Quantifying forecast performance



How good are our models?

Several candidate models might be built based on

» hypotheses / mechanisms
» diagnostics / summaries of fit

Models can be evaluated by their ability to explain data

» OR by the tradeoff in the ability to explain data, and ability to
predict future data
» OR just in their predictive abilities
» Hindcasting
» Forecasting



How good are our models?

We can illustrate with an example to the harborSealWA dataset in
MARSS
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How good are our models?
##
## Call:
## 1m(formula = SJI ~ Year, data = harborSealWA)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.46099 -0.08022 0.06576 0.13286 0.21464
#i#
## Coefficients:

## Estimate Std. Error t value Pr(>|tl)

## (Intercept) -1.392e+02 1.601e+01 -8.697 1.85e-07 **x*
## Year 7.397e-02 8.043e-03 9.197 8.69e-08 **x*
## ——-

## Signif. codes: O ’**xx’ 0.001 ’*x’ 0.01 ’*x> 0.05 ’.’ O.:
##

## Residual standard error: 0.1916 on 16 degrees of freedor
## (4 observations deleted due to missingness)
## Multiple R-squared: 0.8409, Adjusted R-squared: 0.831



How good are our models?

Our regression model had a pretty good SS

S = Z — Ely])?

» But SS is problematic
» as we consider more complex models, they'll inevitably reduce
SS

» there's no cost or penalty for having too many parameters



Model selection

Lots of metrics have been developed to overcome this issue and
penalize complex models

» Occam’s razor: “the law of briefness”

» Principle of parsimony: choose the simplest possible model
that explains the data pretty well

» choose a model that minimizes bias and variance



Model selection
Bias-variance tradeoff
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https://www.ncbi.nlm.nih.gov/books/NBK543534/figure/ch8.Fig3/
https://www.ncbi.nlm.nih.gov/books/NBK543534/figure/ch8.Fig3/

Model selection: AlC

Akaike's Information Criterion (AIC, Akaike 1973)

> Attempts to balance the goodness of fit of the model against
the number of parameters

P> Based on deviance = minus twice negative log likelihood

Deviance =

~2-In (L(ely))

» Deviance is a measure of model fit to data
> lower values are better
» Maximizing likelihood is equivalent to minimizing negative
likelihood



Model selection: AlC

» Why the large focus on AIC?

» Heavily used in ecology (Burnham and Anderson
2002)[https://www.springer.com/gp/book/9780387953649]

» Also the default in many stepwise model selection procedures in
R

» forecast, glmulti, bestglm, AlCcmodavg, MuMIn


https://www.springer.com/gp/book/9780387953649
https://cran.r-project.org/web/packages/forecast/forecast.pdf
https://www.jstatsoft.org/article/view/v034i12/v34i12.pdf
https://cran.r-project.org/web/packages/bestglm/
https://cran.r-project.org/web/packages/AICcmodavg/AICcmodavg.pdf
https://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf

Model selection: AlC

Many base functions in R support the extraction of AlIC

y = cumsum(rnorm(20))
AIC(Im(y~1))

AIC(glm(y~1))

AIC(mgcv: :gam(y~1))
AIC(glmmTMB: : glmmTMB (y~1))
AIC(1me4d: :1lmer(y~1))
AIC(stats::arima(y))
AIC(forecast::Arima(y))
AIC(MARSS:MARSS(y))



Model selection: AlC

Many *IC approaches to model selection also rely on deviance.
Where they differ is how they structure the penalty term.

For AIC, the penalty is 2 * number of parameters (k),

AIC = =2 In (L(Bly)) + 2k

» This is not affected by sample size, n



Model selection: AlC

Small sample AIC

2k(k +1)

AICC:AIC—I—n_k_1

» What happens to this term as n increases?



Model selection: AlC

AIC aims to find the best model to predict data generated from the
same process that generated your observations

Downside: AIC has a tendency to overpenalize, especially for more
complex models

» Equivalent to significance test w/ o = 0.16
Alternative: Schwarz/Bayesian Information Criterion (SIC/BIC)

» Not Bayesian!
» Relies on Laplace approximation to posterior
> « becomes a function of sample size



Model selection: AlC

BIC is measure of explanatory power (rather than balancing
explanation / prediction)

BIC = ~2-In (L(6ly)) + k- In(n)

» Tendency of BIC to underpenalize



Model selection: AlC

Philosophical differences between AIC / BIC

» AIC / AlCc tries to choose a model that approximates reality
P does not assume that reality exists in your set of candidate
models
» One
» BIC assumes that one of your models is truth
» This model will tend to be favored more as sample size increases



AIC and BIC for time series forecasting

» Smallest AIC similar to minimizing one-step ahead forecasts
using MSE Rob Hyndman's blog

» AIC approximates LOOCV Stone (1977)
» BIC approximates k-fold cross validation Shao (1997)


https://robjhyndman.com/hyndsight/aic/
https://www.jstor.org/stable/2984877?seq=1
https://www.jstor.org/stable/24306073?seq=1

Bayesian model selection

The big difference between the Bayesian and maximum likelihood
approaches are that

» ML methods are maximizing the likelihood over the parameter
space

» Bayesian methods are integrating over the parameter space,
asking ‘what values are best, on average?’

Many of the ML methods discussed were designed for models with
only fixed effects.

» What about correlated parameters, nested or hierarchical
models?



Bayesian model selection

Again, lots of options that have evolved quickly over the last several
decades

» Bayes factors (approximated by BIC)

» can be very difficult to calculate for complex models
» Deviance Information Criterion (DIC)

> Spiegelhalter et al. (2002)

> DIC is easy to get out of some programs (JAGS)

» DIC is also attempting to balance bias and variance
» Widely applicable information criterion (WAIC)

» Watanabe (2010)
» Leave One Out Information Criterion (LOOIC)

> Vehtari et al. 2017, Vehtari et al. 2019


https://www.jmlr.org/papers/volume11/watanabe10a/watanabe10a.pdf
https://link.springer.com/article/10.1007/s11222-016-9696-4
https://arxiv.org/abs/1507.02646

Cross validation

Recent focus in ecology & fisheries on prediction
Dietze et al. 2017

Maris et al. 2017

Pennekamp et al. 2017

Pennekamp et al. 2018

Szuwalkski & Thorson 2017

Anderson et al. 2017


https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/eap.1589
https://onlinelibrary.wiley.com/doi/full/10.1111/oik.04655
https://www.sciencedirect.com/science/article/pii/S1476945X16301106
https://www.biorxiv.org/content/early/2018/06/19/350017
https://onlinelibrary.wiley.com/doi/abs/10.1111/faf.12226
https://onlinelibrary.wiley.com/doi/abs/10.1111/faf.12200

Resampling techniques

Jackknife

» Hold out each data point, recomputing some statistic (and
then average across 1:n)

Bootstrap
» Similar to jackknife, but with resampling
Cross-validation (k-fold)

» Divide dataset into k-partitions
» How well do (k-1) partitions predict kth set of points?
» Relationship between LOOCV and AIC / BIC

Data split: test/training sets (e.g. holdout last 5 data pts)



Resampling techniques: bootstrap

Bootstrap or jackknife approaches are useful

» generally used in the context of time series models to generate
new or pseudo-datasets

P posterior predictive checks in Bayesian models generate new
data from posterior draws

> state space models: use estimated deviations / errors to
simulate, estimate Cls

Examples

MARSS: :MARSSboot ()

MARSS: :MARSSinnovationsboot ()

forecast: :bld.mbb.bootstrap()
forecast::forecast(..., TRUE)



Resampling techniques: K-fold cross validation

As an example, we'll use a time series of body temperature from the
beavers dataset

data(beavers)
beaver = dplyr::filter(beaver2, time>200)
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Resampling techniques: K-fold cross validation

» Choose model (e.g. State space model w/MARSS)
> Partition data
> Fit & prediction



Resampling techniques: K-fold cross validation

set.seed(123)

K =25
beaver$part = sample(1:X, nrow (beaver) ,
beaver$pred = 0

beaver$pred_se = 0
for(k in 1:K) {
y = beaver$temp
y [which(beaver$part==k)] = NA
mod = MARSS(y, list("B"="unequal"))
beaver$pred[beaver$part==k] =
mod$states[1,which(beaver$part==k)]
beaver$pred_se[beaver$part==k] =
mod$states.se[1l,which(beaver$part==k)]

T)



Resampling techniques: K-fold cross validation

Predicted (red) and obs (grey)
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Resampling techniques: K-fold cross validation

» How large should K be?
» Bias/variance tradeoff:

> Low K: low variance, larger bias, quicker to run. ML
approaches recommend 5-10

» High K (LOOCV): low bias, high variance, computationally
expensive



Resampling techniques: K-fold cross validation

5-fold (red) vs 20-fold (blue)
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Resampling techniques: repeated K-fold cross validation

» To remove effect of random sampling / partitioning, repeat

K-fold cross validation and average predictions for a given data
point

» caret() package in R does this for some classes of models

» Data splitting for time series


https://topepo.github.io/caret/data-splitting.html#data-splitting-for-time-series

Resampling techniques: repeated K-fold cross validation

> Need to specify repeats

train_control = caret::trainControl (method="repeatedcv",
number=5, repeats=20)

P> Again this is extendable across many widely used models



Resampling techniques

What about for time series data?

» Previous resampling was random
» No preservation of order (autocorrelation)



Resampling techniques: LTOCV

» Leave Time Out Cross Validation = leave each year out in turn
» Predict using historical and future data

» Re-analyze the beaver data using LTOCV



Resampling techniques: LTOCV

LTOCV
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Resampling techniques: LTOCV

» Compare fit to full dataset

Beaver body temperature
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Resampling techniques: future (aka forward chain) CV

Leave Future Out Cross Validation: only evaluate models on future

data

> Fold 1:
> Fold 2:
> Fold 3:
> Fold 4:

training[1], test[2]

training[1:2], test[3]
training[1:3], test[4]
training[1:4], test[5]



Resampling techniques: LFOCV

» Apply MARSS model to beaver dataset

> Assign partitions in order, 1:5

beaver$part = ceiling(5*seq(l,nrow(beaver)) / (nrow(beaver!

> iterate through 2:5 fitting the model and forecasting



Resampling techniques: LFOCV
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Bayesian cross validation

LOOIC (Leave-one out cross validation) + preferred over
alternatives

WAIC (widely applicable information criterion)
» Both available in 1oo::100()

Additional reading: https://cran.r-
project.org/web/packages/loo/vignettes/loo2-example.html


https://cran.r-project.org/web/packages/loo/vignettes/loo2-example.html
https://cran.r-project.org/web/packages/loo/vignettes/loo2-example.html

Bayesian cross validation

» Why do we need to use anything BUT loo::100()?

» LOOIC is an approximation (based on importance sampling)
that can be unstable for flexible (read: state space) models

» Diagnostic: Pareto-k diagnostic, 1 value per point.

P> “measure of each observation's influence on the posterior of the
model”

» ?diagnostics
» Stan forums or or here

» Often need to write code ourselves


https://mc-stan.org/loo/reference/pareto-k-diagnostic.html
https://discourse.mc-stan.org/t/a-quick-note-what-i-infer-from-p-loo-and-pareto-k-values/3446
https://discourse.mc-stan.org/t/recommendations-for-what-to-do-when-k-exceeds-0-5-in-the-loo-package/3417

Bayesian cross validation

» ELPD (Expected log posterior density)

loglp(y")] = logl | p(y" I6)p(6)dt]

» Useful for calculating predictive accuracy for out of sample
point (LTOCV, LFOCV)

» Should act similar to AIC when posterior ~ MVN (more here)


http://mc-stan.org/rstanarm/reference/loo.stanreg.html

Prediction and forecast evaluations

> Let's fit an ARMA(1,1) model to the global temperature data,
after 1st differencing to remove trend

plot(£f1)

Forecasts from ARIMA(1,1,1)
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Quantifying forecast performance

One of the most widelty used metrics is mean square error (MSE)

MSE = E || = E |(xc — )|

» Root mean squared error (RMSE) also very common



Quantifying forecast performance

Like with model selection, the bias-variance tradeoff is important
» principle of parsimony

MSE can be rewritten as

MSE = Var (%) + Bias(x:, %)

* Smaller MSE = lower bias + variance



Quantifying forecast performance

MSE and all forecast metrics can be calculated for

P single data points
» entire time series
» future forecasts

Z?:l (xt — >A<t)2

n

MSE =

» Do you care just about predicting the final outcome of a
forecast, or also the trajectory to get there?



Variants of MSE

Root mean square error, RMSE (quadratic score)

» RMSE = VRMSE
» on the same scale as the data
» also referred to as RMSD, root mean square deviation

Mean absolute error, MAE (linear score)

E [[xt — %]
Median absolute error, MdAE

median [|x; — X¢|]



Scale independent measures of performance

Better when applying statistics of model(s) to multiple datasets
MSE or RMSE will be driven by time series that is larger in
magnitude
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WING SALES SPIKED THE WEEK OF THE SUPER BOWL

Consumers also stocked up in the week leading up to the Super Bowl|
Wings weekly volume

{d Super Bowl 2013
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Percent Error Statistics

Percent Error:

N 100
pt = Y,

Mean Absolute Percent Error (MAPE):

MAPE = E[lpi)
Root Mean Square Percent Error (RMSPE):

RMSPE = /E [p?]



Issues with percent error statistics

e: - 100
Yt

pt =

» What happens when Y = 07

» Distribution of percent errors tends to be highly skewed / long
tails

» MAPE tends to put higher penalty on positive errors
» See Hyndman & Koehler (2006)



Scaled error statistics

Define scaled error as

€t
qt =
T Sl (Yi— Vi)

» denominator is MAE from random walk model, so performance
is gauged relative to that
» this does not allow for missing data

Absolute scaled error (ASE)

ASE = [q;|
Mean absolute scaled error (MASE)

MASE = E [|q:|]



Interpreting ASE and MASE

All values are relative to the naive random walk model
» Values < 1 indicate better performance than RW model

» Values > 1 indicate worse performance than RW model



Implementation in R

» Fit an ARIMA model to ‘airmiles’,holding out last 3 points

n = length(airmiles)
air.model = auto.arima(log(airmiles[1:(n-3)]))



Implementation in R

» Forecast the fitted model 3 steps ahead
» Use holdout data to evaluate accuracy

air.forecast = forecast(air.model, 3)
plot(air.forecast)

Forecasts from ARIMA(0,1,1) with drift
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Implementation in R

Evaluate RMSE / MASE statistics for 3 holdouts

accuracy(air.forecast, log(airmiles[(n-2):n]), 3)

## ME RMSE MAE MPE M.
## Test set -0.4183656 0.4183656 0.4183656 -4.051598 4.051!

Evaluate RMSE / MASE statistics for only last holdout

accuracy(air.forecast, log(airmiles[(n-2):n]), 1)

## ME RMSE MAE MPE M.
## Test set -0.1987598 0.1987598 0.1987598 -1.960106 1.960:



MSE vs MAPE vs MASE

Raw statistics (e.g. MSE, RMSE) shouldn't be applied for data of
different scale

Percent error metrics (e.g. MAPE) may be skewed & undefined for
real zeroes

Scaled error metrics (ASE, MASE) have been shown to be more
robust meta-analyses of many datasets + Hyndman & Koehler
(2006)



Scoring rules

Metrics (RMSE, etc.) evaluate point estimates of predictions
vs. observations

But what if we also care about how uncertain our predictions /
forecasts are?

limited to applications of parametric methods
Scoring rules

Draper (2005)

Gneting and Raftery (2012)

R packages: scoring, scoringRules


https://users.soe.ucsc.edu/~draper/draper-BMIP-dec2005.pdf
https://www.tandfonline.com/doi/abs/10.1198/016214506000001437
https://cran.r-project.org/web/packages/scoring/scoring.pdf
https://cran.r-project.org/web/packages/scoringRules/scoringRules.pdf

Scoring rules

Height (~ likelihood) incorporates bias & precision
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Scoring rules

Second model (blue) less biased, more imprecise
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Questions?



