
Univariate Bayesian time series models
FISH 550 – Applied Time Series Analysis

Eric Ward

2 May 2023

Overview of today’s material

▶ Bayesian estimation
▶ Overview of Stan
▶ Manipulating and plotting Stan output
▶ Examples of time series models

Review of models we’ve used so far

Models
▶ Regression
▶ ARMA models
▶ State Space Models
▶ Dynamic Linear Models
▶ Dynamic Factor Analysis
▶ Multivariate time series models)

Why Bayesian?

▶ Complex hierarchical models
▶ Non-linear models
▶ Hierarchical or shared parameters
▶ Non-normal data
▶ Prior information

▶ Inference: what’s the probability that the data are less than
some threshold?

▶ No bootstrapping!
▶ We get credible intervals for parameters and states

simultaneously

Bayesian logic

▶ Conditional probability

P(θ|y)P(y) = P(θ)P(y|θ)

P(θ|y) = P(θ)P(y|θ)
P(y)

▶ P(y) is a normalizing constant that we often don’t have to
worry about

Bayesian logic

▶ Parameters are random, data are fixed

▶
P(θ|y) = P(θ)P(y|θ)

▶ P(θ|y) is the posterior

▶ P(y|θ) is the likelihood

▶ P(θ) is the prior

Bayesian logic

Bayesian logic

▶ Difference between posterior and prior represents how much we
learn by collecting data

▶ Experiment {H, H, T, H, H, T, H, H}

Bayesian mechanics

▶ MLE seeks to find the combination of parameters that
maximize the likelihood (e.g. find absolute best point)

▶ Bayesian estimation uses integration to find the combination of
parameters that are best on average

Bayesian mechanics in practice

Estimation

▶ Goal of Bayesian estimation in drawing samples from the
posterior P(θ|y)

▶ For very simple models, we can write the analytical solution for
the posterior

▶ But for 99% of the problems we work on, need to generate
samples via simulation

▶ Markov chain Monte Carlo

Estimation

Estimation

Estimation

Estimation

Estimation
▶ Thousands of proposals later, we have a MCMC chain

−2

0

2

0 250 500 750 1000

P
ar

am
et

er

Estimation: best practices

▶ Run 3-4 MCMC chains in parallel

▶ Discard first ~ 10-50% of each MCMC chain as a ‘burn-in’

▶ Optionally apply MCMC thinning to reduce autocorrelation

Lots of algorithms for sampling

▶ Metropolis, Metropolis-Hastings

▶ Sampling - Imporance - Resampling (SIR)

▶ No-U-Turn Sampler (NUTS)

▶ Monahan et al. 2016, Faster estimation of Bayesian models in
ecology using Hamiltonian Monte Carlo

https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.12681
https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.12681

What is Stan?

▶ Powerful, cross-platform and cross-language (R, Julia, Matlab,
etc) that allows users to write custom code that can be called
directly from R

▶ Estimation can be fully or approximate Bayesian inference, or
maximum a posteriori optimization (BFGS)

▶ Useful links:
▶ Stan homepage
▶ Stan manual
▶ rstan

https://mc-stan.org/
https://mc-stan.org/users/documentation/
https://cran.r-project.org/web/packages/rstan/index.html

Options for using Stan in this class

▶ Write your own code (based on examples in the manual, etc)

▶ Use an existing package

▶ Use our bundled code to get started with simple models (we’ll
start here)

Existing packages: rstanarm and brms

▶ Both packages very flexible, and allow same syntax as basic
lm/glm or lmer models, e.g.

rstan::stan_lm
rstan::stan_glm
rstan::stan_glmer

▶ Vignettes brms rstanarm

http://paul-buerkner.github.io/brms/
http://mc-stan.org/rstanarm/articles/rstanarm.html

Existing packages: rstanarm and brms

▶ Very flexible brms includes autocorrelated errors, non-normal
data, non-linear smooths (GAMs), etc.

▶ Limitations related to this class:

▶ allows multivariate data, but not multivariate time series
models brms example

https://cran.r-project.org/web/packages/brms/vignettes/brms_multivariate.html

Existing packages: rstanarm and brms

brms offers notation that should be very familiar to run many
classes of models,
brms::brm(y ~ x * z + (1|group), data=d)
brms::brm(y01 ~ x * z + (1|group), data=d,

family = binomial("logit"))
brms::brm(bf(y ~ s(x)), data=d)

▶ smooths can also be of 2-d models (e.g. spatial models)

Existing packages: rstanarm and brms

brms allows ARMA correlation structures that we’re familiar with,
data("LakeHuron")
LakeHuron <- as.data.frame(LakeHuron)
fit <- brm(x ~ arma(p = 2, q = 1),

data = LakeHuron)

▶ also includes spatial models (car, sar)
▶ does not include these in the context of state space models

Example: linear regression in brms

6

7

8

9

10

1940 1945 1950 1955 1960
Year

lo
g(

ai
rm

ile
s)

Passenger Miles on Commercial US Airlines

Example: linear regression and AR(1) models in brms

▶ Regression
lm_fit = brms::brm(log(airmiles) ~ year, data=df)

▶ Question: how would we change the code to be an AR(1)
model?

lm_ar= brms::brm(log(airmiles) ~ arma(p = 1, q = 0),
data=df)

▶ Defaults to 4 MCMC chains, 2000 iterations, 1000 burn-in

Example: linear regression and AR(1) models in brms

▶ lm_ar is a “brmsfit” object and has a bunch of convenient
plotting functions

plot(lm_ar)

ar[1]

sigma

b_Intercept

0.99 1.02 1.05 1.08 1.11

0.2 0.3 0.4

5.6 6.0 6.4
0.0
0.5
1.0
1.5

0
3
6
9

12

0
5

10
15
20
25

ar[1]

sigma

b_Intercept

0 200 400 600 800 1000

0 200 400 600 800 1000

0 200 400 600 800 1000

5.5
6.0
6.5

0.2
0.3
0.4

0.99
1.02
1.05
1.08
1.11

Chain

1

2

3

4

Example: linear regression and AR(1) models in brms

▶ Pairs plots
pairs(lm_ar)

5.5 6.0 6.5

b_Intercept

5.5

6.0

6.5

0.2 0.3 0.4

5.5

6.0

6.5

0.99 1.02 1.05 1.08

0.15
0.20
0.25
0.30
0.35

5.5 6.0 6.5 0.2 0.3 0.4

sigma

0.2

0.3

0.4

0.99 1.02 1.05 1.08

0.99

1.02

1.05

1.08

1.11

5.5 6.0 6.5
0.99

1.02

1.05

1.08

1.11

0.15 0.20 0.25 0.30 0.35 0.99 1.02 1.05 1.08 1.11

ar[1]

Example: linear regression and AR(1) models in brms

▶ Posterior predictive checks
pp_check(lm_ar)

6 7 8 9 10

y

y rep

Example: linear regression and AR(1) models in brms

▶ Shinystan
shinystan::launch_shinystan(lm_ar)

Example: linear regression and AR(1) models in brms

▶ Additional functionality / diagnostics in bayesplot

mcmc_areas(lm_ar,c("sigma","b_Intercept","ar[1]"))

ar[1]

b_Intercept

sigma

0 2 4 6

Plotting with Stan output

These plots only the tip of the iceberg for plotting. For more great
examples of the kinds of plots avaialable, see these vignettes:

▶ Examples on Stan

▶ Jonah Gabry’s introduction to bayesplot

▶ Matthew Kay’s introduction to bayesplot and tidybayes

https://mc-stan.org/users/interfaces/bayesplot
https://cran.r-project.org/web/packages/bayesplot/vignettes/plotting-mcmc-draws.html
https://cran.r-project.org/web/packages/tidybayes/vignettes/tidybayes.html

Customized models and code for this class

▶ We’ll need to install these packages to run Stan,
install.packages("rstan",

repos = "https://cloud.r-project.org")
install.packages("devtools",

repos = "https://cloud.r-project.org")

▶ And then we can install our custom package for the class with
bundled Stan time series models

devtools::install_github(repo="atsa-es/atsar")
library("atsar")

Models included

▶ atsar package includes:
▶ RW, AR and MA models (with and without drift)
▶ DLMs (intercept, slope, both)
▶ State space RW and AR models
▶ Flexible families for each model

More time series models: application to NEON EFI
Aquatics challenge

▶ Daily temperature and oxygen data available from Barco Lake
in Florida

6

8

10

2019−01 2019−07 2020−01 2020−07 2021−01
Time

O
xy

ge
n

‘atsar’ package: random walk and AR(1) models

This model should be familiar,

E [Yt] = E [Yt−1] + et−1

* Note that the use of the argument model_name and est_drift.
By not estimating drift, we assume the process is stationary with
respect to the mean
rw = fit_stan(y = neon$oxygen,

est_drift = FALSE, model_name = "rw")

‘atsar’ package: univariate state space models

▶ Specify the MCMC parameters
rw = fit_stan(y = neon$oxygen,

est_drift = FALSE,
model_name = "rw",
mcmc_list = list(n_mcmc = 2000, n_burn = 500,

n_chain = 3, n_thin = 1))

‘atsar’ package: univariate state space models

State equation:
xt = ϕx t−1 + εt−1

where εt−1 ∼ Normal(0, q)

Observation equation:

Yt ∼ Normal(xt , r)

▶ Let’s compare models with and without the AR parameter ϕ in
the process model

‘atsar’ package: univariate state space models

We can first run the model with ϕ,
ss_ar = fit_stan(y = neon$oxygen,

est_drift=FALSE, model_name = "ss_ar",
mcmc_list = list(n_mcmc = 2000, n_chain = 1, n_thin = 1,n_burn=1000))

then without,
ss_rw = fit_stan(y = neon$oxygen,

est_drift=FALSE, model_name = "ss_rw",
mcmc_list = list(n_mcmc = 2000, n_chain = 1, n_thin = 1,n_burn=1000))

‘atsar’ package: univariate state space models

Did the models converge?

▶ One quick check is to look at the value of R-hat for each
parameter (generally should be small, < 1.1 or < 1.05)

rw_summary <- summary(ss_rw, pars = c("sigma_process","sigma_obs"),
probs = c(0.1, 0.9))$summary

print(rw_summary)

mean se_mean sd 10% 90%
sigma_process 0.25328836 0.001908073 0.008570219 0.24188715 0.26390167
sigma_obs 0.04480232 0.005540708 0.014138820 0.02914101 0.06444592
n_eff Rhat
sigma_process 20.174086 0.9990057
sigma_obs 6.511721 1.0170924

‘atsar’ package: univariate state space models

▶ Calculate maximum Rhat across all parameters,
rhats <- summary(ss_rw)$summary[,"Rhat"]
print(max(rhats))

[1] 1.017997

▶ Reminder: we only ran one chain / 2000 iterations, so overall
not bad!

‘atsar’ package: univariate state space models

▶ Tidy summaries from Stan output: Using the broom.mixed
package, we can also extract some tidy summaries of the
output

coef = broom.mixed::tidy(ss_ar)
head(coef)

A tibble: 6 x 3
term estimate std.error
<chr> <dbl> <dbl>
1 sigma_process 0.261 0.00731
2 pred[1] 8.22 0.0228
3 pred[2] 8.10 0.0263
4 pred[3] 9.05 0.0247
5 pred[4] 9.00 0.0230
6 pred[5] 8.83 0.0237

‘atsar’ package: univariate state space models

▶ We can use this to look at predictions versus our data

6

8

10

0 200 400 600
Time

y

‘atsar’ package: univariate state space models

▶ We can use this to look at predictions versus our data

6

8

10

0 200 400 600
Time

y

‘atsar’ package: univariate state space models
▶ We can use this to look at predictions versus our data

6

8

10

6 8 10
estimate

y

##‘atsar’ package: raw samples

▶ tidy() functions great at summarizing
▶ fit_stan() returns ‘stanfit’ object that we can use

rstan::extract() on to get raw posterior draws, by chain
pars = extract(ss_ar)

▶ returns list of parameters we can access directly, e.g.
summary(pars$sigma_process)

##‘atsar’ package: model selection

▶ Best practice is to use Leave One Out Information Criterion
(LOOIC) in loo package

▶ We can compare the LOOIC from the 2 models (AR vs RW)

loo_ar = (loo::loo(ss_ar))
loo_rw = (loo::loo(ss_rw))

‘atsar’ package: DLMs

▶ For comparison to MARSS, we’ll use Mark’s example of
logit-transformed survival from the Columbia River. We can
think about setting the DLM up in the slope or the intercept.
For this first example, we’ll do the latter.

−6

−5

−4

−3

1970 1980 1990 2000
year

lo
gi

t.s

‘atsar’ package: DLMs

▶ Fit DLM with random walk in intercept
mod = fit_stan(y = SalmonSurvCUI$logit.s,

model_name="dlm-intercept",
mcmc_list = list(n_mcmc = 2000,

n_chain = 1, n_thin = 1,n_burn=1000))

▶ Fit DLM with random walk in slope
mod_slope = fit_stan(y = SalmonSurvCUI$logit.s,

x = SalmonSurvCUI$CUI.apr,
model_name="dlm-slope",
mcmc_list = list(n_mcmc = 2000,

n_chain = 1, n_thin = 1,n_burn=1000))

‘atsar’ package: DLMs

Let’s look at predictions using the rstan::extract() function

‘atsar’ package: DLMs
Let’s look at predictions using the rstan::extract() function

−6

−5

−4

−3

0 10 20 30 40
Time

pr
ed

Extra extensions

▶ family argument in fit_stan allows to have flexible families
▶ e.g., fit a Poisson or binomial DLM with

mod = fit_stan(y = SalmonSurvCUI$logit.s,
model_name="dlm-intercept",
family="binomial")

mod = fit_stan(y = SalmonSurvCUI$logit.s,
model_name="dlm-intercept",
family="poisson")

Summary

▶ Bayesian implementation of time series models in Stan can do
everything that MARSS can do and more!

▶ Very flexible language, great developer community

▶ Widely used by students in SAFS / UW / QERM / etc

▶ Please come to us with questions, modeling issues, or add to
code in our packages to make them better!

