Univariate Bayesian time series models
FISH 550 — Applied Time Series Analysis

Eric Ward

2 May 2023

Overview of today's material

P Bayesian estimation

» Overview of Stan

» Manipulating and plotting Stan output
> Examples of time series models

Review of models we've used so far

Models

P> Regression
ARMA models
State Space Models
Dynamic Linear Models
Dynamic Factor Analysis
Multivariate time series models)

vVvyyvyYVvyy

Why Bayesian?

» Complex hierarchical models

» Non-linear models
» Hierarchical or shared parameters
» Non-normal data
» Prior information

» Inference: what's the probability that the data are less than
some threshold?

> No bootstrapping!

» We get credible intervals for parameters and states
simultaneously

Bayesian logic

» Conditional probability
P(0]y)P(y) = P(0)P(y|0)

p(oly) =~)

» P(y) is a normalizing constant that we often don't have to
worry about

Bayesian logic

» Parameters are random, data are fixed
P(0ly) = P(0)P(yl0)

» P(f]y) is the posterior

> P(y|0) is the likelihood

» P(0) is the prior

Bayesian logic

Bayesian logic

» Difference between posterior and prior represents how much we
learn by collecting data
» Experiment {H, H, T, H, H, T, H, H}

densily

050 a7s 100
Probability of heads

Bayesian mechanics

» MLE seeks to find the combination of parameters that
maximize the likelihood (e.g. find absolute best point)

» Bayesian estimation uses integration to find the combination of
parameters that are best on average

Bayesian mechanics in practice

I |
0.4
D3-
Frequency
o 400 5
g 300 g
] 3
g 200 g
o [
100

0z-

04

Estimation

» Goal of Bayesian estimation in drawing samples from the
posterior P(d]y)

» For very simple models, we can write the analytical solution for
the posterior

» But for 99% of the problems we work on, need to generate
samples via simulation

» Markov chain Monte Carlo

Estimation

Likelihood

Parameter

Estimation

Likelihood

Parameter

Estimation

)

_Likelihood

Parameter

Estimation

D

_Likelihood

Parameter

Estimation
» Thousands of proposals later, we have a MCMC chain

Parameter
°

0 250 500 750 1000

Estimation: best practices

» Run 3-4 MCMC chains in parallel
» Discard first ~ 10-50% of each MCMC chain as a ‘burn-in’

» Optionally apply MCMC thinning to reduce autocorrelation

Lots of algorithms for sampling

» Metropolis, Metropolis-Hastings
» Sampling - Imporance - Resampling (SIR)
» No-U-Turn Sampler (NUTS)

» Monahan et al. 2016, Faster estimation of Bayesian models in
ecology using Hamiltonian Monte Carlo

https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.12681
https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.12681

What is Stan?

» Powerful, cross-platform and cross-language (R, Julia, Matlab,
etc) that allows users to write custom code that can be called
directly from R

» Estimation can be fully or approximate Bayesian inference, or
maximum a posteriori optimization (BFGS)

» Useful links:

» Stan homepage
» Stan manual
P rstan

https://mc-stan.org/
https://mc-stan.org/users/documentation/
https://cran.r-project.org/web/packages/rstan/index.html

Options for using Stan in this class

» Write your own code (based on examples in the manual, etc)

P> Use an existing package

» Use our bundled code to get started with simple models (we'll
start here)

Existing packages: rstanarm and brms

» Both packages very flexible, and allow same syntax as basic
Im/glm or Imer models, e.g.

rstan::stan_1lm
rstan::stan_glm
rstan::stan_glmer

> Vignettes brms rstanarm

http://paul-buerkner.github.io/brms/
http://mc-stan.org/rstanarm/articles/rstanarm.html

Existing packages: rstanarm and brms

» Very flexible brms includes autocorrelated errors, non-normal
data, non-linear smooths (GAMs), etc.

» Limitations related to this class:

» allows multivariate data, but not multivariate time series
models brms example

https://cran.r-project.org/web/packages/brms/vignettes/brms_multivariate.html

Existing packages: rstanarm and brms

brms offers notation that should be very familiar to run many
classes of models,

brms: :brm(y ~ x * z + (1|group), d)
brms::brm(y01 ~ x * z + (1|group), d,

binomial("logit"))
brms: :brm(bf(y ~ s(x)), d)

» smooths can also be of 2-d models (e.g. spatial models)

Existing packages: rstanarm and brms

brms allows ARMA correlation structures that we're familiar with,

data("LakeHuron")

LakeHuron <- as.data.frame(LakeHuron)

fit <- brm(x ~ arma(2, 1),
LakeHuron)

» also includes spatial models (car, sar)
» does not include these in the context of state space models

Example: linear regression in brms

Passenger Miles on Commercial US Airlines

log(airmiles)

1940 1945 1950 1955
Year

1960

Example: linear regression and AR(1) models in brms

P> Regression
Im_fit = brms::brm(log(airmiles) ~ year, df)
» Question: how would we change the code to be an AR(1)
model?
1m_ar= brms::brm(log(airmiles) ~ arma(1, 0),

df)

» Defaults to 4 MCMC chains, 2000 iterations, 1000 burn-in

Example: linear regression and AR(1) models in brms

» 1m_ar is a “brmsfit” object and has a bunch of convenient
plotting functions

plot(1lm_ar)

b_Intercept b_Intercept
15- 6.5
3 sl ol i A g e
S SRR S
. 56 6.0 6.4 D ZDD 400 BDD BDD 1000 Chain
12 sigma sigma -
9- 0.44
8- 0.3- o — 2
gA 02+ Jmu\"wm'\ ALY w“mwumm" “t‘” Af‘..‘:‘h». i
0.2 013 0:4 0 200 460 600 500 IUUC 4
arf1] arf1]

& vmwmw bt it

0.99 1.02 1.05 1.08 11 0 400 600 800 1000

s
eesast
opppR
vooor
BRI

Example: linear regression and AR(1) models in brms

» Pairs plots

pairs(lm_ar)

b_Intercept L4 o °
- 65- ° 65-
60- O ° @ oo-& "
D)
55- 55- °
‘ Lo = ; !
55 6.0 65 02 03 0.4 0.99 1.02 1.05 1.08
0.35- ° N sigma] ')
° ° 04 —
030- ‘@ o ° °
0.25- ° 0o ’.
020- @ "o -~ ® 0.2~
015 ' " " ' ' i '
55 6.0 65 0.2 03 0.4 0.99 1.02 1.05 1.08

111- o ° 111- ° .. arf1]
1.08- o 1.08-
1.05- ‘. ® ¢ 105- L 3PS
1.02- 1.02- g
- g od - ' ' ' oo ' - . e
015 020 025 030 035

0.99- . 0.99
55 6.0 6.5 0.99 1.02 1.05 1.08 111

Example: linear regression and AR(1) models in brms

» Posterior predictive checks

pp_check(lm_ar)

Example: linear regression and AR(1) models in brms

» Shinystan

shinystan: :launch_shinystan(lm_ar)

Example: linear regression and AR(1) models in brms

» Additional functionality / diagnostics in bayesplot

mcme_areas(lm_ar,c("sigma","b_Intercept","ar[1]"))

sigma = L

b_Intercept = —_—

arf1] = A

Plotting with Stan output

These plots only the tip of the iceberg for plotting. For more great
examples of the kinds of plots avaialable, see these vignettes:

» Examples on Stan
» Jonah Gabry's introduction to bayesplot

> Matthew Kay's introduction to bayesplot and tidybayes

https://mc-stan.org/users/interfaces/bayesplot
https://cran.r-project.org/web/packages/bayesplot/vignettes/plotting-mcmc-draws.html
https://cran.r-project.org/web/packages/tidybayes/vignettes/tidybayes.html

Customized models and code for this class

» We'll need to install these packages to run Stan,

install.packages("rstan",

repos = "https://cloud.r-project.org")
install.packages("devtools",

repos = "https://cloud.r-project.org")

» And then we can install our custom package for the class with
bundled Stan time series models

devtools: :install_github(repo="atsa-es/atsar")
library("atsar")

Models included

P> atsar package includes:

» RW, AR and MA models (with and without drift)
» DLMs (intercept, slope, both)

» State space RW and AR models

» Flexible families for each model

More time series models: application to NEON EFI
Aquatics challenge

» Daily temperature and oxygen data available from Barco Lake

in Florida
10
b i-l
s 0y
141 . I I l
ST TR
o R PR »f
< LR TS) . .
5 N, 2 ’
H 1#: 3 ':*1'\{ % Lk
.'”3'-..' “\1" ! L -.u'.,k‘t
6 - Pad
."'..: ...0'.}?; " fi
'."'.r>' .t
Ny S
2[}157[}1 2[}19‘)7[}7 ZUZ[‘J*UI 2[}20‘707 ZUZ]‘:OI

Time

‘atsar’ package: random walk and AR(1) models

This model should be familiar,

E[Y:] = E[Yic1] + e

* Note that the use of the argument model_name and est_drift.
By not estimating drift, we assume the process is stationary with
respect to the mean

rw = fit_stan(neon$oxygen,
FALSE, "y

‘atsar’ package: univariate state space models

» Specify the MCMC parameters

rw = fit_stan(y = neon$oxygen,
est_drift = FALSE,
model name = "rw",
mcmc_list = list(n_mcmc = 2000, n_burn = 500
n_chain = 3, n_thin = 1))

‘atsar’ package: univariate state space models

State equation:
Xt = PXp_y + €1

where g1 ~ Normal(0, q)

Observation equation:

Y: ~ Normal(x¢,r)

P> Let's compare models with and without the AR parameter ¢ in
the process model

‘atsar’ package: univariate state space models

We can first run the model with ¢,

ss_ar = fit_stan(y = neon$oxygen,
est_drift=FALSE, model name = "ss_ar",
mcmc_list = list(n_mcmc = 2000, n_chain = 1, n_thi

then without,

ss_rw = fit_stan(y = neon$oxygen,
est_drift=FALSE, model_name = "ss_rw",
mcmc_list = list(n_mcmc = 2000, n_chain

1, n_thi:

‘atsar’ package: univariate state space models

Did the models converge?

» One quick check is to look at the value of R-hat for each

parameter (generally should be small, < 1.1 or < 1.05)

rw_summary <- summary(ss_rw, c("sigma_process","sig:

c(0.1, 0.9))$summary

print (rw_summary)

##
##
##
##
##
##

mean se_mean sd
sigma_process 0.25328836 0.001908073 0.008570219 0.2418:
sigma_obs 0.04480232 0.005540708 0.014138820 0.0291¢
n_eff Rhat
sigma_process 20.174086 0.9990057
sigma_obs 6.511721 1.0170924

‘atsar’ package: univariate state space models

» Calculate maximum Rhat across all parameters,
rhats <- summary(ss_rw)$summaryl[,"Rhat"]
print (max(rhats))

[1] 1.017997

» Reminder: we only ran one chain / 2000 iterations, so overall
not bad!

‘atsar’ package: univariate state space models

» Tidy summaries from Stan output: Using the broom.mixed
package, we can also extract some tidy summaries of the
output

coef = broom.mixed::tidy(ss_ar)
head (coef)

A tibble:

##
##
##
##
##
##
##
##

DOk WN -

term

<chr>
sigma_process
pred[1]
pred[2]
pred[3]
pred[4]
pred[5]

6 x 3
estimate std.

<dbl>
.261
.22
.10
.05
.00
.83

0 © © 0 0 O

O O O O O o

error
<dbl>

.00731
.0228
.0263
.0247
.0230
.0237

‘atsar’ package: univariate state space models

> We can use this to look at predictions versus our data

10

Time

‘atsar’ package: univariate state space models

> We can use this to look at predictions versus our data

10

8
SA N . . 8
W Miag
8 q gy S T
o 3 s
> '.’: \ f%‘r. rd 0
S BN ;O

‘atsar’ package: univariate state space models
» We can use this to look at predictions versus our data

10

estimate

##+ atsar’ package: raw samples

» tidy() functions great at summarizing
> fit_stan() returns ‘stanfit’ object that we can use
rstan: :extract() on to get raw posterior draws, by chain

pars = extract(ss_ar)

‘atsar’ package: DLMs

» For comparison to MARSS, we'll use Mark's example of
logit-transformed survival from the Columbia River. We can
think about setting the DLM up in the slope or the intercept.
For this first example, we'll do the latter.

PSS A A A AL

1970 1980 1990 2000
year

logit.s

‘atsar’ package: DLMs

» Fit DLM with random walk in intercept

mod = fit_stan(y = SalmonSurvCUI$logit.s,
model_name="dlm-intercept",
mcmc_list = list(n_mcmc = 2000,
n_chain = 1, n_thin

1,n]

» Fit DLM with random walk in slope

mod_slope = fit_stan(y = SalmonSurvCUI$logit.s,
% = SalmonSurvCUI$CUI.apr,
model_name="dlm-slope",
mcmc_list = list(n_mcmc = 2000,

n_chain = 1, n_thin = 1,n_]

‘atsar’ package: DLMs

Let's look at predictions using the rstan: :extract () function

‘atsar’ package: DLMs

Let's look at predictions using the rstan: :extract () function

pred

-5

Time

Extra extensions

> family argument in £it_stan allows to have flexible families
» e.g., fit a Poisson or binomial DLM with

mod = fit_stan(y = SalmonSurvCUI$logit.s,
model_name="dlm-intercept",
family="binomial")

mod = fit_stan(y = SalmonSurvCUI$logit.s,

model _name="dlm-intercept",
family="poisson")

Summary

» Bayesian implementation of time series models in Stan can do
everything that MARSS can do and more!

» Very flexible language, great developer community
» Widely used by students in SAFS / UW / QERM / etc

» Please come to us with questions, modeling issues, or add to
code in our packages to make them better!

