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Topics for today

Deterministic vs stochastic elements
Regression with autocorrelated errors
Regression with temporal random effects
Dynamic Factor Analysis (DFA)

Forms of covariance matrix
+ Constraints for model fitting

Interpretation of results
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Code for today

You can find the R code for these lecture notes and other related exercises
here.
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file:///Users/eli.holmes/Documents/GitHub/atsa/Lectures/Week%204/lec_08_intro_to_DFA.R

A very simple model

Consider this simple model, consisting of a mean u plus error

y; = u + ¢; with ¢; ~ N(0, 6%)
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A very simple model

The right-hand side of the equation is composed of deterministic and
stochastic pieces

yi=  p T g

—— ——
deterministic stochastic
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A very simple model

Sometime these pieces are referred to as fixed and random

Yi= Kk t &

fixed random
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A very simple model

This can also be seen by rewriting the model
y; = u + ¢; with ¢; ~ N(0, 6%)

dsS

yi ~ N(//l’ 62)
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Simple linear regression

We can expand the deterministic part of the model, as with linear regression

Vi=a+ ,Bxl- + ¢; with e; ~ N(O, 62)

mean

SO

yi ~ N(a + px;, 6°)
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A simple time series model

Consider a simple model with a mean pu plus white noise

)’t — //t + et Wlth et ~ N(Oa 62)
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Time series model with covariates

We can expand the deterministic part of the model, as before with linear
regression

v: = a+ px; + e, with e, ~ N(O, )

mean

SO

y: ~ N(a + px;, 02)
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Example of linear model

Yi=T1+ 55X+ €

Yi

Xy Or Y

Xt

Time
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Model residuals

e

Time

These do not look like white noise!
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ACF of model residuals
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There is significant autocorrelation at lag = 1

13/79



Model with autocorrelated errors

We can expand the stochastic part of the model to have autocorrelated
errors

Vi = o+ px; + ¢
e; = e +wy

with w, ~ N(0, 6%)
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Model with autocorrelated errors

We can expand the stochastic part of the model to have autocorrelated
errors

Vi = o+ px; + ¢
e; = e +wy

with w, ~ N(0, 6%)

We can write this model as our standard state-space model
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State-space model

Observation equation

Vi = a+ px; + ¢
= e, + a+ fx

I
yt=x;+6l+Ddt+vt

with

xx=e,a=aD=p0d =x,v,=0
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State-space model

State equation
e = e + wy

X, = Bx; + wy
with

X =e,and B = ¢
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State-space model

Full form

Vi = a+ px + e
e = e +w;
2
v; = a+ Dd; + x;
X, = Bx; + wy
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State-space model

Observation model in MARSS ()

Yt =Cl+Ddt+xt

U
yt=th+a+Ddt+vt

y = data ## [1 x T] matrix of data

a = matrix("a") ## intercept

D = matrix("D") ## slope

d = covariate ## [1 x T] matrix of measured covariate
Z = matrix(1l) ## no multiplier on x

R = matrix(0) ## v t ~ N(O,R); want v .t = 0 for all t
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State-space model

State model in MARSS ()

Xy = JE&X&-'*‘ Wy

2
x; =Bx; +u+ Cc; + w;

B = matrix("b") ## AR(1) coefficient for model errors
Q = matrix("q") ## w t ~ N(0,0); var for model errors
u = matrix(0) ## u =0

C = matrix(0) # C =0

c = matrix(0) ## c t =0 for all t
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MORE RANDOM EFFECTS
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Expanding the random effect

Recall our simple model

yt:/’t_l'fi

ﬁ;d random
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Expanding the random effect

We can expand the random portion

Ve= U+ ft + €r
fixed ranaom

e; ~ N(O, o)
Ji ~ N(fe=1,7)
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Expanding the random effect

We can expand the random portion

Vi = H + ft + ¢
fixed random

el‘ ~ N(O’ 6)

ﬁ ~ N(ft—la 7/)

This is simply a random walk observed with error

7
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Random walk observed with error

vi = u+ f; + e, with e, ~ N(O, o)
fi = fiz1 + w; with w, ~ N(O, y)
2
v; = a+ x; + v, with v; ~ N(O, R)
X; = x;—1 +w; with w, ~ N(O, Q)
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Expanding fixed & random effects

We can expand the fixed portion

Ye = @ +ﬁxtj+ Lf’ + €
ﬁ;ed ranzirom
el‘ ~ N(O’ 6)
ft ~ N(ft—la 7/)
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Fixed & random effects

In familiar state-space form

v = a+ fx; + f; + e, with e, ~ N(0O, o)
fi = fic1 + w; with w, ~ N(O, y)
2
v; = a + Dd; + x; + v, with v, ~ N(0, R)
xX; = x;—1 + w; with w, ~ N(O, Q)
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MULTIPLE TIME SERIES
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Simple model for 2+ time series

Random walk observed with error
Vit = Xip +a; + Vi
Xit = Xit—1 + Wiy
with
‘}Lt ~ I\I(()a-le)
VViJ"~J Pq(x)a Qz)
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Random walk observed with error

Vig = X1+ a; +vy;
Yo = Xpp +ap + Vo,

Vot = Xpgp a2 + Vi

X1t = X1—1 T Wiy
Xpp = Xop—1 + Woy

Xnt = Xnt—1 T Wy
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Random walk observed with error

In matrix form

yt=X,+a+Vt
Xt=X;_1+W,

with
v, ~ MVN(0, R)
w; ~ MVN(0, Q)
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Environmental time series

We often observe covariance among environmental time series, especially for
those collected close to one another in space
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Common patterns in time series
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=
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State-space model

Ex: population structure

yt=ZX,+a+V;
Xt=X;_1+W,

We can make (test) assumptions by specifying different forms for Z
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State-space model

Ex: Harbor seal population structure

Y1 I 0 O aj V1
) 0 1 0) _XJF | aj 1 %)
vi| =10 1 O|X|xy | +|laz]|+]|w
V4 O 0 1| Lxsl |aa V4
ysh LO O 1] | ds |1 LVs5
Eva Eva R
XN — | XN + WN
L XS &y LAS -1 L WS A
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Finding common patterns

What if our observations were instead a mixture of 2+ states?

For example, we sampled haul-outs located between several breeding sites
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Mixtures of states

Vi 0.8 02 O ap Vi
V2 02 0.7 0.1 [ xjF | a, 1)
ys| =1 0 09 01 |X|xy |+|az]|+]vs
V4 0O 03 0.7 | X5 ay V4
'vs | L O 01 09 Las | Lvs |
I AJF | I AJF _ I WJF |
xy | = | xy + | wy
| Xs & LAS J—1 L Ws &
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Finding common patterns

What if our observations were a mixture of states, but we didn't know how
many or the weightings?

y, =ZxX;,+a+V,
Xt:Xt—l_l_Wt

What are the dimensions of Z.?

What are the elements within Z.?
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Dynamic Factor Analysis (DFA)

DFA is a dimension reduction technique, which models n observed time series
as a function of m hidden states (patterns), where n > m
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Dynamic Factor Analysis (DFA)

State-space form
yl — ZX; + a+ V;
X = Xi—1 +' W
data:y,isn X 1
loadings: Z isn X mwithn > m

states: X; ism X 1
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Dimension reduction
Principal Components Analysis (PCA)

Goal is to reduce some large number of correlated variates into a few
uncorrelated factors
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Principal Components Analysis (PCA)

Calculating the principal components requires us to estimate the covariance
of the data

PC = eigenvectors(cov(y))
There will be n principal components (eigenvectors) for an n X T matrix y

We reduce the dimension by selecting a subset of the components that
explain much of the variance (eg, the first 2)
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Principal Components Analysis (PCA)
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Principal Components Analysis (PCA)

.“. °
2 ) *
®e
1 Lo PCT o °
° .. ... .....
0 "..o $ o .o
foobe o e 3
> . .
1 ® o ue PC2
L J
2 °
-3 -
4
| I | [ I I
2 1 0 1 2 3

46/79



Principal Components Analysis (PCA)

PC2
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Relationship between PCA & DFA

We need to estimate the covariance in the data 'y
yl‘ — ZXt + a + V¢, Wlth V; ~ MVN(O, R)
SO

cov(y,) = Zcov(x,)Z" + R

In PCA, we require R to be diagonal, but not so in DFA

48/79



Principal Components Analysis (PCA)

Forms for R withn = 4

c 0 0 O cr 0 0 O
R; O ¢ 0 O orR; O oo 0 O

O 0 o O O O o3 O

0 0 0 o 0 0 O o4
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Dynamic Factor Analysis (DFA)

Forms for R withn = 4

c 0 0 O cr 0 O O
R; O ¢ 0 O o R; O oo 0 O
0O 0 o O O O o635 O
0 0 0 o 0 0 O o4
6y vy 7| o1 0 0 0 |
R o v V|l ,r2l? 2 0 ra
Yy o ¥ 0 0O o3 O
vy v v o] 0 a4 O o4 _
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Dynamic Factor Analysis (DFA)

What form should we use for Z.?

<1
<2
<3
<4

<5

?
or 7, =

y, =ZxX;,+a+V,
X; = Xp—1 T W;

21,1
212
<1,3
214

<1,5

22,1
2272
<23
224

<25

?
or 7. =

<11
<12
213
214

<1,5

22,1
2272
<23
224

<25
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Dynamic Factor Analysis (DFA)

y, =ZxX;,+a+V,
X; = Xp—1 T W;

What form should we use for Z.?

<1 21,1 22,1 <1,1 22,1 <3,

véo) Z1,2 Z2,2 Z1,2 Z2,2 Z3,2
? ?
|lorZ=|z213 223|orZ=|213 223 233

| <5 _ iln  2n

Zl,n Z2,n Z3,I’l

We'll use model selection criteria to choose (eg, AlCc)
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Fitting DFA models

Unless Z. is unconstrained in some manner, there are an infinite number of
combinations of Z: and X that will equal y

Therefore we need to impose some constraints on the model
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Constraints on DFA models
1) The offset a
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Constraints on DFA models
1) The offset a

We will set the first m elements ofato 0
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Constraints on DFA models

1) The offset a

For example, ifn = Sand m = 2

= a=
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Constraints on DFA models
1) The offset a

For example, ifn = Sandm = 2

Note, however, that this causes problems for the EM algorithm so we will

often de-mean the data and set a; = O for all i

oS O O O
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Constraints on DFA models

2) The loadings Z

yt=ZX,+a+V;
X = Xi—1 +' W

<1,1
<1,2

<1,3

<Z1,n

2,1
2,2

<2,3

22.n
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Constraints on DFA models
2) The loadings Z

yt=ZX,+a+V;
X = Xi—1 +' W

<1,1 <21 eer Zm,l
<12 <22 -+«  ZmQ2
=213 23 ... Zm3
Zm,4

R4N) 22.n <o Imn |

We will set the upper right triangle of Z to 0
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Constraints on DFA models
2) The loadings Z

For example, ifn = Sandm = 3

For the firstm — 1 rows of Z, z;; = 0ifj > i
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Constraints on DFA models

2) The loadings Z

An additional constraint is necessary in a Bayesian context

21.1
{1.2
7 = 713

214

<15

0

32,2

<23

<23
<25

Diagonal of Z is positive: z;; > 0ifi = j

0
0
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Constraints on DFA models

3) The state variance Q

yt=ZX,+a+V;
X = Xi—1 +' W

w, ~ MVN(0, Q)
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Constraints on DFA models

3) The state variance Q

yt=ZX,+a+V;
X = X¢—1 T W;

w, ~ MVN(0, Q)

We will set Q equal to the Identity matrix I
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Constraints on DFA models
3) The state variance Q

For example, if m = 4

oS O =
_ O
—_ O O

-
—_ O O O

0O 0 O

This allows our random walks to have a /ot of flexibility
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Dynamic Factor Analysis (DFA)

Including p covariates

yt=th+a+Ddt+Vt

X = X/ + W;
d; is a p X 1 vector of covariates at time ¢

D is an n X p matrix of covariate effects
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Dynamic Factor Analysis (DFA)

Form for D
yl‘ — ZX;+3+2d,+V;
Xt — Xl‘—l + Wt
Careful thought must be given a priori as to the form for D

Should the effect(s) vary by site, species, etc?
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Dynamic Factor Analysis (DFA)

Form for D

For example, given 2 covariates, Temp and Salinity

dTemp dSalinity
dTem dsglin;
p Salinity
D =
i dTemp dSalinity _
< — _

effects same by site/species

or D=

dTernp, 1 d Salinity,1

ATemp2  dsalinity,2
dtempn  dsalinity,n |
" - _J/

effects differ by site/species
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A note on model selection

Earlier we saw that we could use model selection criteria to help us choose
among the different forms for Z

However, caution must be given when comparing models with and without
covariates, and varying numbers of states
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A note on model selection

Think about the DFA model form

Y, = Zx, +a+Dd, + v,

X; are undetermined random walks

d; are predetermined covariates
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An example with 3 times series

Model 1 has 2 trends and no covariates

_Y1 21,1 22,1 V1
X1
| =212 222 +1 v
X2 "
V3 It | 213 223 ] L V3 )y
Model 2 has 1 trend and 1 covariate
yi 4| D V1

V2 [x]t+ D» [d]t+ Vv

L Y3 s | <3 D3 | L V3 |

|
N
S
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An example with 3 times series

Model 1 has 2 trends and no covariates

Y1
2
Y3

21,1 22,1
212 222
<13 <223

Model 2 has 1 trend and 1 covariate

Y1
2

AN

!

[x], +

Unless d is highly correlated with 'y, Model 1 will be favored
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A note on model selection

For models with covariates

- fit the most complex model you can envision based on all of your possible
covariates and random factors (states)

- keep the covariates fixed and choose the number of trends (states) using
AlCc

* keep the covariates & states fixed and choose the form for R

*sort out the covariates while keeping the states & R fixed
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Interpreting DFA results

Recall that we had to constrain the form of Z. to fit the model

<1,1 0 0
Z12 222 0
0
7z =
<m,m
| <1l,n  K2n  <3n impn _

So, the 1st common factor is determined by the 1st variate, the 2nd common
factor by the first two variates, etc.
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Interpreting DFA results

To help with this, we can use a basis rotation to maximize the loadings on a
few factors

If H is an m X m non-singular matrix, these 2 DFA models are equivalent

yt=ZX,+a+Ddt+Vt
X; = Xp—1 T W;

yl‘ — ZH_lxt + a + Ddt + Vl‘
HXZ — HXZ‘—l + HW;

How should we choose H?
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Basis rotation

Varimax

A varimax rotation will maximize the variance of the loadings in Z along a few
of the factors
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PCA of 5 wines with 8 attributes

Hedonic

[ ]
Acidit
CIAIY % Alcohol
X1

[ ]
For meat

Price
o

For dessert
[ ]

Sugar
®

X2

76/79



Rotated loadings

R1 Hedonic

Acidit
cidity .o Alcoho
X1

[ ]
For meat

For desse

R2

Sugar
®

X2

Price
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Rotated loadings

[ ]
®
Hedonic
Acidity o
cidity @5 Aicohol

Price

[ ]
For meat

® For dessert
[ ]

Sugar
.

R2
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Topics for today

Deterministic vs stochastic elements
Regression with autocorrelated errors
Regression with temporal random effects
Dynamic Factor Analysis (DFA)

Forms of covariance matrix
+ Constraints for model fitting

Interpretation of results
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