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Topics for today

Covariates
Why include covariates?

Multivariate linear regression on time series data

Covariates in MARSS models

Seasonality in MARSS models

Missing covariates

·

·

·

·

·
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Why include covariates in a model?

You want to forecast something using covariates

We are often interested in knowing the cause of variation

Covariates can explain the process that generated the patterns

Covariates can help deal with problematic observation errors

You are using covariates to model a changing system

You want to get rid of trends or cycles

·

·

·

·

·

·
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Lake WA plankton and covariates
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Covariates in time series models

Multivariate linear regression for time series data

Linear regression with ARMA errors

ARMAX - process errors driven by covariates

MARSS models with covariates = process and observation errors affected by covariates

Covariates in general state-space models

·

·

·

·

aka Vector Autoregressive Models with covariates and observation error-

·
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Multivariate linear regression for time series
data

Can you do a linear regression with time series data (response and predictors)? Yes, but you need to
be careful. Read Chapter 5 in Hyndman and Athanasopoulos 2018

Diagnostics that need to be satisfied

Be careful regarding spurious correlation if both response and predictor variables have trends

·

Residuals are temporally uncorrelated

Residuals are not correlated with the predictor variables

-

-

·
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https://otexts.com/fpp2/regression.html


Autocorrelated response and predictor
variables

Both response and predictors have a seasonal trend
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Linear regression with autocorrelated errors

The xreg argument in Arima() and arima() allows you to fit linear regressions with autocorrelated
errors. Read Chapter 9 in Hyndman and Athanasopoulos 2018 on Dynamic Regression.

A linear regression with autocorrelated errors is for example:

= α + D +yt dt νt

= + +νt θ1νt−1 θ2νt−2 et
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https://otexts.com/fpp2/dynamic.html


Fitting in R

Arima()

auto.arima()

LOTS of packages have options for auto-correlated errors

fit <- Arima(y, xreg=d, order=c(1,1,0))

fit <- auto.arima(y, xreg=x)
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Example from Hyndman and Athanasopoulos
2018
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A simple regression has problems

y <- uschange[,"Consumption"]; d <- uschange[,"Income"]
fit <- lm(y~d)
checkresiduals(fit)

## 
##  Breusch-Godfrey test for serial correlation of order up to 10
## 
## data:  Residuals
## LM test = 27.584, df = 10, p-value = 0.002104
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Let auto.arima() find best model

fit <- auto.arima(y, xreg=d) # It finds a ARMA(1,0,2) is best.
checkresiduals(fit)

## 
##  Ljung-Box test
## 
## data:  Residuals from Regression with ARIMA(1,0,2) errors
## Q* = 5.8916, df = 5, p-value = 0.3169
## 
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Collinearity

This a big issue. If you are thinking about stepwise variable selection, do a literature search on the
issue. Read the chapter in Holmes 2018: Chap 6 on catch forecasting models using multivariate
regression for a discussion of

Stepwise variable regression in R

Cross-validation for regression models

Penalized regression in R

Diagnostics

·

·

·

Lasso

Ridge

Elastic Net

-

-

-

·
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https://fish-forecast.github.io/Fish-Forecast-Bookdown/6-1-multivariate-linear-regression.html


ARMAX

ARMAX models are different. In this case, the covariates affect the amount the auto-regressive
process changes each time step.

You can think of this as

covariates affect the process errors (good bad years)·

= b +xt xt−1 C +ct wt

  

process error

covariates drive the drift, aka · u

= b + +xt xt−1 Cct⏟drift "u"

wt
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Covariates in MARSS models

This is a state-space model that allows you to have the covariate affects process error and affect
observation errors.

= B + u + C +xt xt−1 ct wt

= Z + a + D +yt xt dt vt

15/54



Example - univariate state-space models

Now we can model how covariates affect the hidden process.

= b + u + C +xt xt−1 ct wt

= + D +yt xt dt vt
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Example - univariate state-space models

Random walk with drift. How does covariate affect the drift term?

Example. You have tag data on movement of animals in the ocean. How does water temperature
affect the speed (jump length) of the movement.

= + u + +xt xt−1 Cct wt

= +yt xt vt
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Example - univariate state-space models

How does covariate affect observation error relative to our stochastic trend.

Example. You are tracking population size using stream surveys. Turbidity affects your observation
error.

= + u +xt xt−1 wt

= +yt xt D +dt vt
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Multivariate Example - Covariates in state
process

 The covariate is in  and the effect is in matrix .

Example. lat/lon movement data so  and  are 2 dimensional (our lat and lon values).

= + u + +xt xt−1 Cct wt

= +yt xt vt

Cct ct C

x y
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Multivariate Example - Covariates in state
process

The model for  in site 1 (or species 1) is:

There is an effect of the prior  and an effect of temperature and phosporous.

= + [ ] +[ ]
x1

x2 t
[ ]

x1

x2 t−1

Ca

Ca

Cb

Cb
[ ]

temp

TP t
[ ]

w1

w2 t

xt

= + × tem + × T +x1,t x1,t−1 Ca pt Cb Pt w1,t

xt
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The structure of 

The structure of  can model different effect structures

Effect of temp and TP is the same

C

C

[ ]
C

C

C

C [ ]
temp

TP t
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Effect of temperature and TP is different but the same across sites, species, whatever the row in
 isx

[ ]
Ca

Ca

Cb

Cb
[ ]

temp

TP t
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Effect of temperature and TP is different across sites or whatever the row in  isx

[ ]
Ca1

Ca2

Cb1

Cb2
[ ]

temp

TP t
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Effect of temperature is the same across sites but TP is not

[ ]
Ca

Ca

Cb1

Cb2
[ ]

temp

TP t

24/54



Multivariate Example - Covariates in
observation process

eg, vegetation obscures individuals, temperature affects behavior making animals more or less
visible

= + +yt Zxt⏟hidden state

a
⏟scaling term

D +dt vt

  

observation error
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Covariates in the observation process

In this case the covariate does not affect the state . It affects the observation of the state.

= + + +

⎡
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⎥
⎥

t

⎡
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0

0

0

1
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⎦

⎥
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⎡

⎣

⎢
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The model for  in site 1 is:yt

= + × tem + × win +y1,t x1,t Da pt Db dt v1,t
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The structure of 

The structure of  can model many different structures of the effects.

Effect of temp and wind is the same across sites 1 & 2 but different for site 3. In site 3, temp has
an effect but wind does not

D

D

⎡

⎣

⎢
⎢

Da

Da

Dc

Db

Db

0

⎤

⎦

⎥
⎥ [ ]

temp

wind t
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Why include covariates in the process?

We want to understand how covariates drive the hidden process.

We want to test hypotheses for what caused a perturbation or change in the dynamics.

We want to forecast using covariates.

We want to model the autocorrelation in the process errors using the known driver.

We want to remove seasonality or cycles

·

·

·

·

·
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Why include covariates in a observation?

Auto-correlated observation errors

Correlated observation errors across sites or species (y rows)

We want to remove seasonality or cycles

“hard numerically” = you need a lot of data

Model your  as a AR-1 process. hard numerically with a large multivariate state-space model

If know what is causing the auto-correlation, include that as a covariate. Easier.

· vt

·

Use a  matrix with off-diagonal terms. really hard numerically

If you know or suspect what is causing the correlation, include that as a covariate. Easier.

· R

·
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Let’s work through an example

lec_07_covariates.R in the Fish550 repo

Follows Chapter 8 in the ATSA lab book
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https://atsa-es.github.io/atsa-labs/chap-msscov.html


Seasonality
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Seasonality

Different approaches to modeling seasonality·

Factors

Polynomials

Sines and cosines (Fourier series)

-

-

-
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Monthly factors in 

Introduce 12 covariates: January, February, etc. If  is in January the January covariate is 1 otherwise it
is 0.

where  is the month at time step , so we have a different drift term each month.

x

t

= + +xt xt−1 Cct

⏟drift

wt

C =ct αm

m t
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Monthly factors

WA

OR

month effects

a 2 by 12 matrix

[ ]
C1

C1

C2

C2

C3

C3

…

…

C12

C12

covariates

a 12 by T matrix
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TT <- nrow(chinook.month)/2
covariate <- matrix(0, 12, TT)
monrow <- match(chinook.month$Month, month.abb)[1:TT]
covariate[cbind(monrow,1:TT)] <- 1
covariate[,1:12]

##       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
##  [1,]    1    0    0    0    0    0    0    0    0     0     0     0
##  [2,]    0    1    0    0    0    0    0    0    0     0     0     0
##  [3,]    0    0    1    0    0    0    0    0    0     0     0     0
##  [4,]    0    0    0    1    0    0    0    0    0     0     0     0
##  [5,]    0    0    0    0    1    0    0    0    0     0     0     0
##  [6,]    0    0    0    0    0    1    0    0    0     0     0     0
##  [7,]    0    0    0    0    0    0    1    0    0     0     0     0
##  [8,]    0    0    0    0    0    0    0    1    0     0     0     0
##  [9,]    0    0    0    0    0    0    0    0    1     0     0     0
## [10,]    0    0    0    0    0    0    0    0    0     1     0     0
## [11,]    0    0    0    0    0    0    0    0    0     0     1     0
## [12,]    0    0    0    0    0    0    0    0    0     0     0     1
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WA and OR have different month effects.

WA and OR have same month effects.

C <- matrix(paste0(month.abb,rep(1:2,each=12)), 2, 12, byrow = TRUE)
C[,1:6]

##      [,1]   [,2]   [,3]   [,4]   [,5]   [,6]  
## [1,] "Jan1" "Feb1" "Mar1" "Apr1" "May1" "Jun1"
## [2,] "Jan2" "Feb2" "Mar2" "Apr2" "May2" "Jun2"

C <- matrix(month.abb, 2, 12, byrow = TRUE)
C[,1:6]

##      [,1]  [,2]  [,3]  [,4]  [,5]  [,6] 
## [1,] "Jan" "Feb" "Mar" "Apr" "May" "Jun"
## [2,] "Jan" "Feb" "Mar" "Apr" "May" "Jun"
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Season as a 3rd order polynomial

Introduce 3 covariates: ,  and  where  is month (1 to 12).

where  is month at time .

m m2 m3 m

= + C +xt xt−1 ct wt

C = m + +ct β1 β2m2 β3m3

m t
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Season as polynomial

WA

OR

month effects

a 2 by 3 matrix

[ ]
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a 3 by T matrix
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TT <- nrow(chinook.month)/2
monrow <- match(chinook.month$Month, month.abb)[1:TT]
covariate <- rbind(monrow, monrow^2, monrow^3)
rownames(covariate) <- c("m", "m2", "m3")
covariate[,1:13]

##    [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
## m     1    2    3    4    5    6    7    8    9    10    11    12     1
## m2    1    4    9   16   25   36   49   64   81   100   121   144     1
## m3    1    8   27   64  125  216  343  512  729  1000  1331  1728     1
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WA and OR have different seasonal pattern.

WA and OR have same seasonal pattern.

C <- matrix(paste0(c("m", "m2", "m3"),".",rep(1:2,each=3)), 2, 3, 
            byrow = TRUE)
C

##      [,1]  [,2]   [,3]  
## [1,] "m.1" "m2.1" "m3.1"
## [2,] "m.2" "m2.2" "m3.2"

C <- matrix(c("m", "m2", "m3"), 2, 3, byrow = TRUE)
C

##      [,1] [,2] [,3]
## [1,] "m"  "m2" "m3"
## [2,] "m"  "m2" "m3"
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Season as a Fourier series

Fourier series are paired sets of sine and cosine waves

They are commonly used in time series analysis in the frequency domain

·

·
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Season as a Fourier series

Introduce 2 covariates: ,  where  is period (12 for monthly) and  is the time
step (1 to ).

where  is 12 (for monthly).

sin(2πt/p) cos(2πt/p) p t
T

= + C +xt xt−1 ct wt

C = sin(2πt/p) + cos(2πt/p)ct β1 β2

p
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forecast fourier() function

You can also use the fourier() function in the forecast package to create your covariates.

This makes it easy to create a longer fourier series to model non-symmetric or multi-modal seaonal
cycles.

x <- ts(1:TT, freq=12)
covariate <- forecast::fourier(x, K=1) |> t()

x <- ts(1:TT, freq=12)
covariate2 <- forecast::fourier(x, K=2) |> t()
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Season as a Fourier series (K=1)

WA

OR

 

 

[ ]
C1

C1

C2

C2

covariates

a 2 by T matrix

[ ]
sin ( )2π1

12

cos ( )2π1
12

sin ( )2π2
12

cos ( )2π2
12

…

…

sin ( )2πT

12

cos ( )2πT

12
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TT <- nrow(chinook.month)/2
covariate <- rbind(sin(2*pi*(1:TT)/12), cos(2*pi*(1:TT)/12))
plot(covariate[1,1:50], type="l")
lines(covariate[2,1:50], col="red")
title("covariates sines and cosines")
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WA and OR have different seasonal pattern.

WA and OR have same seasonal pattern.

C <- matrix(paste0(c("s", "c"),".",rep(1:2,each=2)), 2, 2, byrow = TRUE)
C

##      [,1]  [,2] 
## [1,] "s.1" "c.1"
## [2,] "s.2" "c.2"

C <- matrix(c("s", "c"), 2, 2, byrow = TRUE)
C

##      [,1] [,2]
## [1,] "s"  "c" 
## [2,] "s"  "c"
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Example Section 8.6

Seasonality of Lake WA plankton

50/54

https://atsa-es.github.io/atsa-labs/sec-msscov-season.html


Cyclic salmon

Chapter 16
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https://atsa-es.github.io/atsa-labs/chap-cyclic-sockeye.html


Missing covariates

SNOTEL Example Chapter 11

https://atsa-es.github.io/atsa-labs/example-snotel-data.html
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https://atsa-es.github.io/atsa-labs/example-snotel-data.html


Snow Water Equivalent (snowpack)

February snowpack estimates
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Use MARSS models Chapter 11

Accounts for correlation across sites and local variability·
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