Covariates in Time Series Models
FISH 550 - Applied Time Series Analysis

Eli Holmes
18 Apr 2023



Topics for today

Covariates

- Why include covariates?

- Multivariate linear regression on time series data
- Covariates in MARSS models

- Seasonality in MARSS models

-+ Missing covariates
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Why include covariates in a model?

- You want to forecast something using covariates

- We are often interested in knowing the cause of variation

- Covariates can explain the process that generated the patterns
- Covariates can help deal with problematic observation errors

- You are using covariates to model a changing system

- You want to get rid of trends or cycles
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Lake WA plankton and covariates
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Covariates in time series models

Multivariate linear regression for time series data
Linear regression with ARMA errors
- ARMAX - process errors driven by covariates
MARSS models with covariates = process and observation errors affected by covariates
- aka Vector Autoregressive Models with covariates and observation error

- Covariates in general state-space models
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Multivariate linear regression for time series
data

Can you do a linear regression with time series data (response and predictors)? Yes, but you need to
be careful. Read Chapter 5 in Hyndman and Athanasopoulos 2018

- Diagnostics that need to be satisfied
- Residuals are temporally uncorrelated
- Residuals are not correlated with the predictor variables
- Be careful regarding spurious correlation if both response and predictor variables have trends
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https://otexts.com/fpp2/regression.html

Autocorrelated response and predictor
variables

Both response and predictors have a seasonal trend

both covariate and response are seasonal
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Linear regression with autocorrelated errors

The xreg argument in Arima() and arima() allows you to fit linear regressions with autocorrelated
errors. Read Chapter 9 in Hyndman and Athanasopoulos 2018 on Dynamic Regression.

A linear regression with autocorrelated errors is for example:
Vi = Q + Dd[ + U

l/t = ell/t_l -+ H2I/t_2 -+ e,
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https://otexts.com/fpp2/dynamic.html

Fitting in R

Arima ()

fit <- Arima(y, xreg=d, order=c(1l,1,0))

auto.arima()

fit <- auto.arima(y, xreg=x)

LOTS of packages have options for auto-correlated errors
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Example from Hyndman and Athanasopoulos
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A simple regression has problems

y <- uschange[, "Consumption"]; d <- uschange[,"Income"]
fit <- 1lm(y~d)
checkresiduals(fit)

Residuals
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Lag residuals

##

## Breusch-Godfrey test for serial correlation of order up to 10
##

## data: Residuals

## LM test = 27.584, df = 10, p-value = 0.002104
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Let auto.arima () find best model

fit <- auto.arima(y, xreg=d) # It finds a ARMA(1,0,2) is best.
checkresiduals(fit)

Residuals from Regression with ARIMA(1,0,2) errors
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Lag residuals
##
## Ljung-Box test
##

## data: Residuals from Regression with ARIMA(1,0,2) errors
## Q* = 5.8916, df = 5, p-value = 0.3169
H#H
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Collinearity

This a big issue. If you are thinking about stepwise variable selection, do a literature search on the
issue. Read the chapter in Holmes 2018: Chap 6 on catch forecasting models using multivariate
regression for a discussion of
- Stepwise variable regression in R
- Cross-validation for regression models
Penalized regression in R
- Lasso
- Ridge
- Elastic Net
Diagnostics
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https://fish-forecast.github.io/Fish-Forecast-Bookdown/6-1-multivariate-linear-regression.html

ARMAX

ARMAX models are different. In this case, the covariates affect the amount the auto-regressive

process changes each time step.

You can think of this as

- covariates affect the process errors (good bad years)

X, = bx;_1 +

* covariates drive the drift, aka u

Xy = bxt_l +

Cce; +w;

—_——

process error

Cce,

——
drift "u"

+ w;
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Covariates in MARSS models

This is a state-space model that allows you to have the covariate affects process error and affect
observation errors.

X[ - th_l +u+ CCt +WZ

yt=ZX[+a+Ddt+Vt
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Example - univariate state-space models

Xt =b.x[_1 +u+CCt+Wt
yt=.xt+Dd[+vt

Now we can model how covariates affect the hidden process.
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Example - univariate state-space models

x[=.x[_1+u+ CC; +WZ

Ve =X+
Random walk with drift. How does covariate affect the drift term?

Example. You have tag data on movement of animals in the ocean. How does water temperature
affect the speed (jump length) of the movement.
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Example - univariate state-space models

xt=xt_1+u+wt

yt=x[+ Ddt+vt

How does covariate affect observation error relative to our stochastic trend.

Example. You are tracking population size using stream surveys. Turbidity affects your observation
error.
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Multivariate Example - Covariates in state
process

X,=Xt_1+ll+ CC; +W[

Y: =X +V;
Cc; The covariate is in ¢; and the effect is in matrix C.

Example. lat/lon movement data so X and y are 2 dimensional (our lat and lon values).
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Multivariate Example - Covariates in state
process

X1y = X14-1 + Co Xtemp; + Cp, X TP, + wy

There is an effect of the prior x; and an effect of temperature and phosporous.
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The structure of C

The structure of C can model different effect structures

W

Effect of temp and TP is the same
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Effect of temperature and TP is different but the same across sites, species, whatever the row in

X is
[Ca Cb] [temp]
C, GCp TP |,
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Effect of temperature and TP is different across sites or whatever the row in X is

[Cal Cbl] lfeml?]
Coo Cp TP |,
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Effect of temperature is the same across sites but TP is not

[Ca Cbl] [temp]
C, Cp TP |,
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Multivariate Example - Covariates in
observation process

eg, vegetation obscures individuals, temperature affects behavior making animals more or less
visible

yt - ZXt + a + Ddt + V;

——

R scaling term N, e’

hidden state !
observation error
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Covariates in the observation process
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The model for y; in site 1 is:

Yir = X1, + D, X temp, + Dy X wind, + vy
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The structure of D

The structure of D can model many different structures of the effects.

Effect of temp and wind is the same across sites 1 & 2 but different for site 3. In site 3, temp has
an effect but wind does not

l)a l)b
temp
l)a l)b .
wind |,
| D, 0 _
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Why include covariates in the process?

- We want to understand how covariates drive the hidden process.

- We want to test hypotheses for what caused a perturbation or change in the dynamics.
- We want to forecast using covariates.

- We want to model the autocorrelation in the process errors using the known driver.

- We want to remove seasonality or cycles
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Why include covariates in a observation?

Auto-correlated observation errors
Model your v, as a AR-1 process. hard numerically with a large multivariate state-space model
If know what is causing the auto-correlation, include that as a covariate. Easier.
Correlated observation errors across sites or species (y rows)
Use a R matrix with off-diagonal terms. really hard numerically
If you know or suspect what is causing the correlation, include that as a covariate. Easier.
We want to remove seasonality or cycles

“hard numerically” = you need a lot of data
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Let's work through an example

lec_07 covariates.R in the Fish550 repo

Follows Chapter 8 in the ATSA lab book
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https://atsa-es.github.io/atsa-labs/chap-msscov.html

Seasonality
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Seasonality

- Different approaches to modeling seasonality
- Factors
- Polynomials

- Sines and cosines (Fourier series)
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Monthly factors in x

Introduce 12 covariates: January, February, etc. If ¢ is in January the January covariate is 1 otherwise it
is 0.

x, = .xt_l -+ CCt + W;
[ —

drift

where m is the month at time step ¢, so we have a different drift term each month.
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Monthly factors
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Cy
Cy
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TT <- nrow(chinook.month)/2

covariate <- matrix(0, 12, TT)

monrow <- match(chinook.month$Month, month.abb)[1l:TT]
covariate[cbind(monrow,1:TT)] <- 1

covariate[,1:12]

## (.11 [(,21 [,3] [,4) [,5) [,6] [,7] [,8] [,9]
# [1,] 1 0 0 0 0 0 0 0 0
#Ho12,] 0 1 0 0 0 0 0 0 0
# 13,1 0 0 1 0 0 0 0 0 0
#Ho14,] 0 0 0 1 0 0 0 0 0
# 15,1 0 0 0 0 1 0 0 0 0
#[6,] 0 0 0 0 0 1 0 0 0
#0171 0 0 0 0 0 0 1 0 0
#[8,] 0 0 0 0 0 0 0 1 0
# 19,1 0 0 0 0 0 0 0 0 1
## [10,] 0 0 0 0 0 0 0 0 0
# [11,] 0 0 0 0 0 0 0 0 0
## 112, 0 0 0 0 0 0 0 0 0

[,10]
0

O O P O O O O O O oo o

[,11] [,12]

0

O P O O O O O o o o oo

P O O O O O O O O O o ©
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WA and OR have different month effects.

C <- matrix(pastel(month.abb,rep(l:2,each=12)), 2, 12, byrow = TRUE)
C[,1:6]

## [,11] [,2] [,3] [,4] [,5] [,6]
## [1,] "Janl" "Febl" "Marl" "Aprl" "Mayl" "Junl"
## [2,] "Jan2" "Feb2" "Mar2" "Apr2" "May2" "Jun2"

WA and OR have same month effects.

C <- matrix(month.abb, 2, 12, byrow = TRUE)
C[,1:6]

#i# (.11 .21 [,31 [,41 [,5]1 [,6]
## [ 1 , ] "Jan " "Feb " "Mar n "Apr n "May" n Jun "
## [ 2 , ] "Jan n "Feb n uMar n "Apr n uMaYu n Jun n
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Season as a 3rd order polynomial

2 and m® where m is month (1to 12).

Introduce 3 covariates: m, m
x, = xt_l + CCt + Wt

— 2 3

(3(; -—-/31n1-+-/32nn +—/33nn

where m is month at time f.
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Season as polynomial

covariates
month effects a 3 by T matrix
a2by3matrix [1 2 3 ... 12| m
WA [Cc, ¢ G |17 22 32 .. 122 m?
OR lcl Gy CJ 1703 3 12w
1 2 3 ... T month
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TT <- nrow(chinook.month)/2

monrow <- match(chinook.month$Month, month.abb)[1:TT]

covariate <- rbind(monrow, monrow”2, monrow”3)
llm3 n )

rownames (covariate) <- c("m",
covariate[,1:13]

#it (.11 [,2] [,3] [,4] [,5]

## m 1 2 3 4 5
## m2 1 4 9 16 25
## m3 1 8 27 64 125

llm2 ] ,

[/6]
6

36
216

(/7]
7
49
343

[,8]
8

64
512

[/9]
9

81
729

[,10]
10
100
1000

[,11]
11
121
1331

[,12]
12
144
1728

[,13]
1
1
1
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WA and OR have different seasonal pattern.

n n

C <- matrix(pasteO(c("'m", "m2", "m3"),".",rep(l:2,each=3)), 2, 3,
byrow = TRUE)
Cc

#i# [,1]1 [,2] [,3]
## [1,] "m.1" "m2.1" "m3.1"
## [2,] "m.2" "m2.2" "m3.2"

WA and OR have same seasonal pattern.

n n n

C <- matrix(c("m",
Cc

m2", "m3"), 2, 3, byrow = TRUE)

## (.11 [,2] [,3]
## [1,] "m" "m2" "m3"
## [ 2 , ] "mll ||m2 n llm3 "
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Season as a Fourier series

- Fourier series are paired sets of sine and cosine waves

- They are commonly used in time series analysis in the frequency domain

42/54



Season as a Fourier series

Introduce 2 covariates: sin(2xt/p), cos(2rnt/p) where p is period (12 for monthly) and ¢ is the time
step (1 to 7).

.xt - xt_] + CC; + WZ
Cc, = pysin(2rtlp) + prcos2rtlp)

where p is 12 (for monthly).
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covariate

covariates sines and cosines
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forecast fourier () function

You can also use the fourier () function in the forecast package to create your covariates.

X <- ts(1:TT, freqg=12)
covariate <- forecast::fourier(x, K=1) |> t()

This makes it easy to create a longer fourier series to model non-symmetric or multi-modal seaonal
cycles.

X <- ts(1l:TT, freq=12)
covariate2 <- forecast::fourier(x, K=2) |> t()
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covariate

K=2 for fourier transform and now we can have 2 peaks
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Season as a Fourier series (K=1)

covariates

a 2 by T matrix
WA [Cl Cz] sin(lizl) Sil’l(%) Sin(2{[—2T>
OR |C; (C, cos(@) cos(%) cos(zf—T)
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TT <- nrow(chinook.month)/2

covariate <- rbind(sin(2*pi*(1:TT)/12), cos(2*pi*(1l:TT)/12))
plot(covariate[1l,1:50], type="1")

lines(covariate[2,1:50], col="red")

title("covariates sines and cosines")

covariates sines and cosines
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WA and OR have different seasonal pattern.

n n

C <- matrix(pasteO(c("s", "c"),".",rep(l:2,each=2)), 2, 2, byrow = TRUE)
C

## [(,11 [,2]
## [1,] "s.1" "c.1"
## [2,] "s.2" "c.2"

WA and OR have same seasonal pattern.

C <- matrix(c("s", "c"), 2, 2, byrow = TRUE)
C

## (/11 [,2]
## [1,] "S" ||c"
## [2,] "s" "¢
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Example Section 8.6

Seasonality of Lake WA plankton
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https://atsa-es.github.io/atsa-labs/sec-msscov-season.html

Cyclic salmon

Chapter 16
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https://atsa-es.github.io/atsa-labs/chap-cyclic-sockeye.html

Missing covariates

SNOTEL Example Chapter 11

https://atsa-es.github.io/atsa-labs/example-snotel-data.html
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https://atsa-es.github.io/atsa-labs/example-snotel-data.html

Snow Water Equivalent (snowpack)

February snowpack estimates
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Use MARSS models Chapter 11

Accounts for correlation across sites and local variability
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