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Topics
Lecture 

 Short example of multivariate observations

 Examples of multivariate structure in population data

 How to express these structures mathematically

 Adding a multivariate observation process

Computer Labs

 Analysis of population structure using multi-site data 

 Combining diverse data sources to estimate an underlying model



Other examples

Combine multiple 
station data into a 

single metric
Multiple individuals 
measured over time



Imagine we have 3 sampling locations 
for a population

Location 1
mark-recapture

Location 2
mark-recapture

Location 3
line transect



Mathematically we can write

observations population 
size noise
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The observation part can be rewritten

observations Z matrix
population 
size bias noise
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We need to fix one of the a’s. 
Traditionally we fix to the first to 0.



The model with one a fixed to zero

observations Z matrix
population 
size bias noise
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The observation errors are multivariate.
For now, let’s assume Normality
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The variance-covariance matrix tells you how the 
observation errors are related.  Are they independent? Or do 
they covary?  Do have the same variance or difference 
variances?



Example observation error var-cov
matrices
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Example of errors coming from these variance-
covariance matrices

unconstrained equal var-cov

diagonal and equal diagonal and unequal

error
= how 
much 
the pop. 
growth 
rate is 
above or 
below 
average

mvrnorm(10,rep(0,3),diag(.1,3))



Fitting MARSS models using the MARSS R 
Package

• Fits MARSS models
• Model specification is 1-to-1 with the equation 

for the model
• General, fits any MARSS model with Gaussian 

errors.
• BUT
• Maximum likelihood
• Slow for large data sets.  Huge speed improvements 

are possible by coding their models in TMB (or 
ADMB or greta). Mark will talk about this.



MARSS R Package Model Syntax

X(t) = B X(t-1) + U + w(t), w(t) ~ N(0, Q)
Y(t) = Z X(t) + A + v(t), v(t) ~ N(0,R)

• fit2=MARSS(y,model=mod.list)

• y is data; model tells MARSS what the parameters are
• The parameters are MATRICES
• You write matrices just like they appear in your model on 

paper. Matrices must be MATRICES (not scalars, not vectors)
• You pass model to MARSS as a list



X(t) = B X(t-1) + U + w(t), w(t) ~ N(0, Q)
Y(t) = Z X(t) + A + v(t), v(t) ~ N(0,R)

Let’s say we want to fit this model:

Write in matrix form:

mod.list=list(
U=matrix(“u"),
x0=matrix(0),
B=matrix(1),
Q=matrix(0.1),
Z=matrix(1),
A=matrix(0),
R=matrix("r"),
tinitx=0)

mod.list=list(
Q=matrix(0.1)

)



X(t) = B X(t-1) + U + w(t), w(t) ~ N(0, Q)
Y(t) = Z X(t) + A + v(t), v(t) ~ N(0,R)

mod.list=list(
U=matrix(“u"),
x0=matrix(0),
B=matrix(1),
Q=matrix(0.1),
Z=matrix(1,2,1),
A= matrix(list(0,"a2"),2,1),
R= matrix(list("r",0,0,"r"),
tinitx=0)

Let’s say we want to fit a model where two 
sites are sampling temperature x in a lake:

Our temperature model:

Our two temperature sensors:



Some short examples

• marss_example_1.R
• marss_example_2.R
• marss_example_3.R



An example: modeling the population dynamics of 
harbor seals in Puget Sound, WA



Multi-site data (Pacific harbor seals)

Jeffries et al. 2003. Trends and Status of Harbor Seals in WA State: 
1978-1999. J of Wildlife Management 67: 208-219.
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Let’s hypothesize (and model) that the 
population has 3 subpopulations

Three subpopulations that are 
independent but have correlated 
population dynamics (dispersal, 

similar environment, etc.)
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A multivariate model for the population
(not the observations but the actual population)
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3 different x’s, one for 
each subpopulation

3 mean 
population 
growth rate 

terms

3 different 
process errors

e ~ MVN(0,Q)

Multivariate stochastic exponential growth



The population model in matrix form

xt = xt-1 + u + wt

wt ~ MVN(0,Q)

Each parameter has “structure”.  Different structures imply 
different population structure.

Exponential population growth with drift (tendency to 
increase or decline)



The mean population growth rates (u) can 
have spatial structure

















S

N

JF

u
u
u

unconstrained (all different) all the same

Strait of Juan de Fuca different
North and South same

















u
u
u

















SN

SN

JF

u
u
u

&

&



The process error var-cov matrix can have 
structure: wt ~MVN(0,Q)
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population changes covary

diagonal
unique variances and year-to-year population 

changes are uncorrelated

diagonal
same variances and year-to-year population 

changes are uncorrelated

JF has unique variance; 
N & S share the same variance

yr-to-yr changes have equal covariance



Strait of JF
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The structure of the U and Q 
specify our hypotheses (or 
assumptions) about how the 
environment is shared.

JF

N

S

xt =  xt-1 + u + wt



We observe our subpopulations and those 
observations have error

NEFSC/NOAA

For example, some surveys are from boats. Counting is not perfect and some 
animals are in the water.



The obs. err. model specifies  how the observed time series are 
related to the true subpopulation sizes
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Jeffries et al. 2003. TRENDS AND STATUS OF HARBOR SEALS IN WASHINGTON STATE: 
1978–1999. J. Wildl. Manage. 67(1):208-219
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The observation model

observations observation biases

measurement errorsrelates each 
observation time 

series to a different 
state process

Z matrix

JF   N    S

Log of 
counts

true population “hidden”



The observation errors have a var-cov matrix
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The harbor seal multivariate state-space model in 
matrix form
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Instead of N, S, Str. J subpopulations, we could have other 
combinations and numbers of subpopulations
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The same model can capture many different underlying 
population structures and observation structures
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Inferring spatial structure from time‐series data: using multivariate 
state‐space models to detect metapopulation structure of California sea 

lions in the Gulf of California, Mexico

Journal of Applied Ecology
Volume 47, Issue 1, pages 47-56, 15 DEC 2009 DOI: 10.1111/j.1365-2664.2009.01745.x
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2664.2009.01745.x/full#f1

(NOAA, Channel Is)

Hypotheses about the population structure:
Diet, Disease, DNA, Distance 
(2 null models: no structure and fully structured) 

http://onlinelibrary.wiley.com/doi/10.1111/jpe.2010.47.issue-1/issuetoc
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2664.2009.01745.x/full#f1




The MARSS manual has two chapters using 
MARSS models to analyze spatial count data

harbor seal count data from the west coast of the USA



Chapter 7 in HWS 2014 

Chapter 7: Combining multi-site data to 
estimate regional population trends



Chapter 8 in HWS 2014

Identifying spatial 
structure and covariance 
in harbor seals on the 
west coast of the USA

2000km



Shortcut for the Z matrix

Z matrix
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