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Topics

Lecture

» Short example of multivariate observations

» Examples of multivariate structure in population data
» How to express these structures mathematically

» Adding a multivariate observation process

Computer Labs
» Analysis of population structure using multi-site data

» Combining diverse data sources to estimate an underlying model
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Imagine we have 3 sampling locations
for a population




Mathematically we can write

x,=x,_, +u+w,w ~N(0,q)
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The observation part can be rewritten

We need to fix one of the a’s.
Traditionally we fix to the first to O.
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The model with one a fixed to zero
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The observation errors are multivariate.
For now, let’s assume Normality

The variance-covariance matrix tells you how the
observation errors are related. Are they independent? Or do
they covary? Do have the same variance or difference
variances?
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Example observation error var-cov
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Example of errors coming from these variance-
covariance matrices
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Fitting MARSS models using the MARSS R
Package

 Fits MARSS models

* Model specification is 1-to-1 with the equation
for the model

* General, fits any MARSS model with Gaussian
errors.

* BUT

 Maximum likelihood

e Slow for large data sets. Huge speed improvements
are possible by coding their models in TMB (or
ADMB or greta). Mark will talk about this.



MARSS R Package Model Syntax

X(t) = B X(t-1) + U + w(t), w(t) ~ N(O, Q)
Y(t) =Z X(t) + A + v(t), v(t) ~ N(O,R)

£fit2=MARSS (y,model=mod.list)

y is data; model tells MARSS what the parameters are

The parameters are MATRICES

You write matrices just like they appear in your model on
paper. Matrices must be MATRICES (not scalars, not vectors)

You pass model to MARSS as a list



X(t) = B X(t-1) + U + w(t), w(t) ~ N(O, Q)
Y(t) =Z X(t) + A + v(t), v(t) ~ N(O,R)
mod.list=list( Let's say we want to fit this model:
U=matrix(“u"),
x0=matrix(0), Ty =T 1+ U+ W, Wt ~~ AT(O, Ol)

B=matrix(1), Yt = Ty + Up, Uy ~~ f\r(ﬂ, T)
Q=matrix(0.1),

Z=matrix(1), rg =0
A=matrix(0),
R=matrix("r"), Write in matrix form:
tinitx=0) ] = [1][z]i—1 + [u] + [w]s, [w]: ~ MV N(0,[0.1])
)y = [1[z]; + [v], [v]s ~ MV N(O, [r])
mod.list=list( zg = [0]

Q=matrix(0.1)
)



X(t) = B X(t-1) + U + w(t), w(t) ~ N(O, Q)
Y(t) =Z X(t) + A + v(t), v(t) ~ N(O,R)

Let’s say we want to fit a model where two

mod.list=list
( sites are sampling temperature x in a lake:

U=matrix(“u"),

x0=matrix(0), Our temperature model:
B=matr|x(1), [lf — [1[If—l -+ [u: -+ [T_L-‘:f. [T.L-‘:f ' J,f‘l’:\*([} [Dl)
Q=matrix(0.1), [1 )= [D'

Z=matrix(1,2,1),
A= matrix(list(0,"a2"),2,1),

Yi Ly |0 vl
R= matrix(list("r",0,0,"r"), wl |1 [z + s T Uy
f t

tinitx=0) vy VN 0 r 0
v, [0 [0 7

Our two temperature sensors:



Some short examples

* marss_example 1.R

* marss_example 2.R

* marss_example 3.R



An example: modeling the population dynamics of
harbor seals in Puget Sound, WA
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Multi-site data (Pacific harbor seals)
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Jeffries et al. 2003. Trends and Status of Harbor Seals in WA State:
1978-1999. J of Wildlife Management 67: 208-219.



log population size (x)

38 42 46 50

38 42 46 50

38 42 46 50

Let’s hypothesize (and model) that the
population has 3 subpopulations
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Strait of Juan de Fuca

South Puget Sound
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Three subpopulations that are
independent but have correlated
population dynamics (dispersal,

similar environment, etc.) .
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A multivariate model for the population
(not the observations but the actual population)

Multivariate stochastic exponential growth

X JF 4 X JF 11 U Wir .
Xne | = Xnea | 7| Uy | T| Wi
Xse | | Xset | LUs || Wy |
3 different
3 mean Process errors
3 different x’s, one for population
each subpopulation growth rate e ~ MVN(0,Q)

terms



The population model in matrix form

Exponential population growth with drift (tendency to
increase or decline)

X, =X, T U+ W,

w,~ MVN(0,Q)

Each parameter has “structure”. Different structures imply
different population structure.



The mean population growth rates (u) can
have spatial structure

Uy u
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The process error var-cov matrix can have
structure: w, “MVN(0,Q)
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We observe our subpopulations and those
observations have error

For example, some surveys are from boats. Counting is not perfect and some
animals are in the water.

NEFSC/NOAA




log(counts)

log(counts)

The obs. err. model specifies how the observed time series are
related to the true subpopulation sizes

8.0 9.0

7.0

6.0

9.0

8.0

7.0

6.0

Str..Juan.de

1980

1990

Puget.Soun

1980

1990

log(counts)

log(counts)

San.Juan.lsl

8.0 9.0

7.0

6.0

9.0

8.0

7.0

6.0

12 ° 2
oo° g
4 o 8
o0 8
_ GO o
(]
T T
1980 1990
Hood.Canal
] o
° o
_lo | %o
°© o
- I I I I
1980 1990

8.0 9.0

7.0

6.0

Eastern.Bay
3 5 sampling
o g0 P locations
[ [ [
1980 1990
Strait of JF

Jeffries et al. 2003. TRENDS AND STATUS OF HARBOR SEALS IN WASHINGTON STATE:
1978-1999. J. Wildl. Manage. 67(1):208-219

ckley

MT. RAINIER K
“ it Rairter

.

Actzirs



The observation model

true population “hidden”
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The observation errors have a var-cov matrix
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The harbor seal multivariate state-space model in
matrix form

identity 3x1 vectors

>/ N\ o

x, = Bx, , +u+w, where w, ~ MVN(0,Q)
y,=7Zx,+a+v, where v, ~ MVN(0,R)

\ / 5x5 matrix

5x1 vectors



Instead of N, S, Str. J subpopulations, we could have other
combinations and numbers of subpopulations
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The same model can capture many different underlying
population structures and observation structures

X, =X, ,+u+w, where w, ~ MVN(0,Q)
y, =7ZXx,+a+v, where v, ~ MV'N(0,R)



Inferring spatial structure from time-series data: using multivariate
state-space models to detect metapopulation structure of California sea
lions in the Gulf of California, Mexico
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Hypotheses about the population structure:
Diet, Disease, DNA, Distance

(2 null models: no structure and fully structured)
Journal of Applied Ecology

Volume 47, Issue 1, pages 47-56, 15 DEC 2009 DOI: 10.1111/j.1365-2664.2009.01745.x
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2664.2009.01745.x/full#f1



http://onlinelibrary.wiley.com/doi/10.1111/jpe.2010.47.issue-1/issuetoc
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2664.2009.01745.x/full#f1

Table 1. Model performance, given by Akaike's Information Criterion (AIC) b-value, across the six hypotheses for the
subpopulation configuration

Parameters Hypotheses {(m = no. subpopulations)

Panmictic Diet Disease Distance DHA Independent
u Q R (m=1) (m=4) {m=4) (m=4) (m=2) (m=11)
Same Same Same 63-2 43-4 49-3 26-8 38-9 22-2
Lnique Same Same 63-9 72-8 46-9 46-6 2h-5
Same Lnigue Same 55-3 57-6 26-6 34-2 G4-4
Same Same Lnigue ar-3 Td-4 732 G63-4 G67-3 32-5
Lnique Same Linique a7-1 91-3 71-8 G69-3 Gh-6
LInique Lnigque Same 61-4 a4-1 39-8 38-3 50-0
Same Linique Linique 102-8 103-8 2021 827 1147
Unigue Lnique Lnique 111-8 133-8 167-8 775 169-2
Same Carrelated Same 40-3 63-1 37-0 38-3 4304-7
Unigque Correlated Same 44-9 a7-2 @ 39-6 939-4
Same Correlated Linique 110-3 163-8 321-4 102-2 A
LInigue Correlated Lnigue 16-3 176-5 467-9 94-5 A

Process errors (Q) may be independent (a diagonal matrix) with variances that are the same magnitude across
subpopulations (same), independent with unequal variances across subpopulations (unigue) or may be temporally correlated,
meaning an unconstrained @ matrix (correlated). The growth rate (u) and observation error matrix (R) parameters may also be
equal (same) or unigue across subpopulations. The model best supported by the data is shown in bold; complex models that
did not fully converge are not applicable.



The MARSS manual has two chapters using
MARSS models to analyze spatial count data

harbor seal count data from the west coast of the USA
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Chapter 7 in HWS 2014

Chapter 7: Combining multi-site data to
estimate regional population trends

Puget Sound Harbor Seal Surveys
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Chapter 8 in HWS 2014
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Shortcut for the Z matrix

Coastal Estuaries
Olympic Peninsula
Str. Juan de Fuca
San Juan Islands
Eastern Bays
count Puget Sound =

CA.Mainland
CA.Channellslands
OR North Coast

OR South Coast
Georgia Strait

+a+v

S = =0 OO O O O =
S O O = = O O O O O O
=

_ o O O O = = = = O O

Z matrix

»»n »»n »»n »»n »n »n »n »» »»

factor(c(“or.wa”,”or.wa,”’ps”,’ps”,’ps”,’ps’, ca’,”ca”,”or.wa”,”or.wa”,”ps”))
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