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Week 3: State-Space Models

We are now starting a 5 lecture block on Gaussian state-space models.

Lectures 1 & 2: building blocks for analysis of multivariate time-series data
with observation error, structure, and missing values

Lectures 3-5: Specific applications: covariates, dynamic factor analysis,
dynamic linear models

+ Properties of time series data
* AR and MA models: x; = byx,—1 + bax,—> + ¢;

- Today: State-space models (observation error and hidden random
walks)
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Univariate linear state-space model

Xt =X +u+w, w,~NQ,Qq)
e =X+ v, v ~NQO,r)
The x model is the classic “random walk” with drift.

y are the observatons.

This model is a random walk observed with (Gaussian) error.
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Univariate linear state-space model

Xt =X +u+w, w,~NQ,Qq)

Yt=xt+Vt, VZ‘NN(Oar)

There are many textbooks on this class of model. It is used in extensively in

economics and engineering.
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AR(1) or AR lag-1

All of these are examples:
Xy = Xi—1 + U+ Wy
Xe+1 = Xp + Wy

Xt = b.xt_l +u+ wy
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Why is the random walk with drift model so
important in analysis of ecological data?

Additive random walks
X=X +u+w, w;~N@QO,q)

- Movement, changes in gene frequency, somatic growth if growth is by
fixed amounts

- Why Gaussian? The average of many small perturbations, regardless of
their distribution, is Gaussian.
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Multiplicative random walks
n, = An;_1e;, log(e;) ~ N(O,q)
- Population growth, somatic growth if growth is by percentage

- Take the log and you get the linear additive model above. log-normal error
distribution means that 10% increase is as likely as 10% decrease
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Gompertz model

Addition of b with O < b < 1 leads to process model with mean-reversion.

In the ecological literature on density-dependent processes, you may see this
in non-log notation:

N; = exp(u + wt)Ntb_1

N, is population size.
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Gompertz model

Take the log, and we have
X =bx,_1 +u+w;
w; ~ N(0O, g)

It is not required that w; is Gaussian but that is a common assumption.
Dynamics of processes with non-Gaussian errors, esp long-tailed errors, is a
common extension. Autocorrelated errors could be implemented with MA
process or covariates.
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Gompertz model

Weak density-dependence (b=.9) Strong density-dependence (b=.2)
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Simple model, great flexibility

An random walk can show a wide-range of trajectories, even for the same
parameter values. All trajectories below came from the same random walk

model: x; = x;,_1 — 0.02 + w;, w; ~ N(mean = 0.0, var = 0.01).
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Definition: state-space

The “state” is a hidden (dynamical) variable. In this class, it will be a hidden
random walk or AR(1) process.

Our data are observations of this hidden state.

Often state-space models include inputs (explanatory variables) and the state
or the data may be multivariate.

The model you are seeing today is a simple univariate state-space model with
no inputs.

state: x; = x;1 +u+wy

observation: y; = x; + v,
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Example: population count data

Yearly, usually, population or subpopulation counts, possibly with missing
values.

African wild dogs population counts
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Example: population count data

The data are observations of a hidden ‘true’ population size. The data are
observations of that hidden state and have observation error.

African wild dogs population counts
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Observation error

This is a survey photograph for Steller sea lions in the Gulf of Alaska. There IS
some number of sea lions in our population in year ¢, but we don't know that
number precisely. It is “hidden”.
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The observation error variance is often
unknowable in fisheries and ecological
analyses

Sightability varies due to factors that may not be fully understood or
measureable

- Environmental factors (tides, temperature, etc.)
- Population factors (age structure, sex ratio, etc.)

+ Species interactions (prey distribution, prey density, predator distribution
or density, etc.)

Sampling variability-due to how you actually count animals-is just one
component of observation variance
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Process versus observaton variability

Suppose we have the following data (say, population density logged)
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Fit a linear regression

The model of the hidden state in this case is x, = a + ft. The observation
model is y; = x; + v;. All variability = non-process or observation variability.

log(N)
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Fit a random walk model

The model of the hidden state in this case is x; = a + x;—1 + w;. The
observation model is y; = x;. All variability = process variability.
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Fit a state-space model

Autoregressive state-space models fit a random walk AR(1) through the data.
The variabilty in the data contains both process and non-process
(observation) variability.

0.4 0.6
|

log(N)
0.2

0.0

-0.2
I

20/36



Non-process variability

Observation or “non-process” error is the difference between the hidden
state (blue line) and the observation (X).
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Process variability

Process error is the difference between the expected x; given data up to time
t — 1 (x in the plot) and the actual x at time 7.

0.4 0.6

y and x

0.2

0.0
I

-0.2

22/36



PVA example

One use of univariate state-space models is “count-based” population
viability analysis (chap 7 HWS2014)
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Pop. Estimate
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How you model your data has a large impact
on your forecasts

Process only
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How can we separate process and non-process
variance?

Wouldn't these two variances be impossible to separate?
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They have different temporal patterns.

process is autocorrelated
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Nile River example
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Kalman filter and smoother

The Kalman filter and smoother is an algorithm for computing the expected
value of the x; from the data and the model parameters.

X =X +u+w;, w,~NQ,q)

yt=xt+vla Vl‘NN(Oar)
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Diagnostics

Innovations residuals aka, one-step ahead residuals, same ones we used for
ARMA models
data at time f minus model predictions given dataup to t — 1

P = E[Y,]y—1]

In the MARSS package, the one-step ahead residuals are returned by

residuals(fit)
This is fairly standard for models that fit state-space models.

Standard diagnostics

- ACF
+ Normality
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MARSS package

We will be using the MARSS package to fit univariate and multivariate state-
space models.

The main function is MARSS ():
fit <- MARSS(data, model=list())

data are a vector or a matrix with time going along the columns.

model list is a list with the structure of all the parameters.
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MARSS model notation

Xt = th_l +U+W[, Wy ~ N(O, Q)
Vr = th +A+Vt, V¢ NN(O,R)

The MARSS model list follows this notation one-to-one.
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X=X +u+w, w;~ N@QO,q)
Vi =X+ vy, v ~N@QO,r)
Write as where everything bold is a matrix.
X =Bx,1 +U+w,, w, ~N@O,Q)
v =2x; + A +v, v, ~N@O,R)

mod.list <- list(
U = matrix("u"),
x0 = matrix("x0"),
= matrix(l),
= matrix("q"),
matrix(1l),

= matrix(0),

g o N O W
Il

= matrix("r"),
tinitx = 0
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Diagnostics and plotting

Use
autoplot(fit)

where fit is returned by MARSS () to see the standard diagnostics.
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Output

fit <- MARSS()

- coef (fit) to get the estimated parameters

+ tidy(fit) to get estimated parameters with Cls

* tsSmooth() to get the estimates states or use fit$states
fitted() to get the model estimates of meany

fr <- forecast(fit, h=5, interval="prediction") predictions
autoplot (fr) plot the forecast
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Let's see some examples

We will go through these in class

-+ example 1
+ example 2
+ example 3

- example 4
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https://atsa-es.github.io/atsa/Lectures/Week%203/univariate_example_1.R
https://atsa-es.github.io/atsa/Lectures/Week%203/univariate_example_2.R
https://atsa-es.github.io/atsa/Lectures/Week%203/univariate_example_3.R
https://atsa-es.github.io/atsa/Lectures/Week%203/univariate_example_4.R

