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Topics for today

Review

- White noise

- Random walks
Autoregressive (AR) models
Moving average (MA) models

Autoregressive moving average (ARMA) models

Using ACF & PACF for model ID
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Code for today

You can find the R code for these lecture notes and other related exercises
here.
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file:///Users/scheuerl/Documents/GitHub/atsa/Lectures/Week%202/lec_03_ARMA_models.R

White noise (WN)

A time series {w, } is discrete white noise if its values are

1. independent

2. identically distributed with a mean of zero

The distributional form for {w, } is flexible
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White noise (WN)
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Gaussian white noise

We often assume so-called Gaussian white noise, whereby

w, ~ N(0, 6%)
and the following apply as well
: , { o2 ifk=0
autocovariance: y; = ,
0 ifk>1
autocorrelation: - { btk=0
PR ifk > 1
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Gaussian white noise
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Random walk (RW)

A time series {x;} is a random walk if
1., = X;—1 + Wy

2. W; is white noise
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Random walk (RW)
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X = Xi—1 +we;we ~ N(O, 1)
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Random walk (RW)

Of note: Random walks are extremely flexible models and can be fit to many
kinds of time series

10/84



Biased random walk

A biased random walk (or random walk with drift) is written as
Xy = Xi—1 + U+ Wy

where u is the bias (drift) per time step and w; is white noise

11/84



Biased random walk
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Xt = Xr—1 + 1 —+ Wy Wy N(O, 4)
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Differencing a biased random walk

First-differencing a biased random walk yields a constant mean (level) u plus
white noise

Xt = X—1 + U+ Wy

V(x; = x—1 +u+wy)
Xt — Xp—] = Xp—1 T U+ W — X
Xt — X1 = U+ Wy
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Differencing a biased random walk
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Linear stationary models



Linear stationary models

We saw last week that linear filters are a useful way of modeling time series

Here we extend those ideas to a general class of models call autoregressive
moving average (ARMA) models
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Autoregressive (AR) models

Autoregressive models are widely used in ecology to treat a current state of
nature as a function its past state(s)
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Autoregressive (AR) models

An autoregressive model of order p, or AR(p), is defined as

Xt = Q1X—1 + QaXxe—p + o+ PpXi—p + Wy
where we assume
1. w, is white noise

2. ¢, # 0for an order-p process
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Examples of AR(p) models

AR(1)

x; = 0.5x,_1 +w;

AR(1) with ¢p; = 1 (random walk)

Xt — Xr—1 + Wl

AR(2)

x; = —0.2x,_1 + 0.4x,_0 + w;
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Examples of AR(p) models
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Stationary AR(p) models

Recall that stationary processes have the following properties

1. no systematic change in the mean or variance
2. no systematic trend

3. no periodic variations or seasonality

We seek a means for identifying whether our AR(p) models are also
stationary
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Stationary AR(p) models

We can write out an AR(p) model using the backshift operator

Xt = @1X-1 + P2xi—2 + - + Ppxi—p + Wy
U

Xt = P1X—1 — PaXpp — 0+ — ¢pxt—p = Wy

(1 —¢1B—¢B> — - — ¢,B)x; = w,

Cbp(Bp)xt = Wy
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Stationary AR(p) models

If we treat B as a number (or numbers), we can out write the characteristic
equation as

¢p(B)xt = W
U
¢p(Bp) =0

To be stationary, all roots of the characteristic equation must exceed 1 in
absolute value
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Stationary AR(p) models

For example, consider this AR(1) model from earlier

Xt = O.Sxt_l ~+ Wy
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Stationary AR(p) models

For example, consider this AR(1) model from earlier

x; = 0.5x,_1 +w;

U
Xy — O.Sxt_l — Wy
Xt — O.Sth = Wy

(1 —0.5B)x, = w,
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Stationary AR(p) models

For example, consider this AR(1) model from earlier

(1 —0.5B)x; = w;

4
1-05B=0
—0.5B = -1
B=2

This model is indeed stationary because B > 1
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Stationary AR(p) models

What about this AR(2) model from earlier?

Xt = "'().Zthu_l + ().éllft__21'4‘ Wy
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Stationary AR(p) models

What about this AR(2) model from earlier?

xr = —0.2x_1 +0.4x,_, + w;
J

x; +0.2x,21 — 0.4x,_0 = wy

x; + 0.2Bx; — 0.4B%x, = w,

(14 0.2B — 0.4B%)x; = w;
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Stationary AR(p) models

What about this AR(2) model from earlier?

(1 +0.2B — 0.4B%)x, = w,
\[2
1+02B—-04B%* =0

J
B; ~ —1.35and B, ~ 1.85

This model is not stationary because only B, > 1
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What about random walks?

Consider our random walk model

Xt = Xp—1 + Wy
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What about random walks?

Consider our random walk model

Xt = Xi—1 + Wy
J
Xt — Xe—1 = Wy
x; — 1Bx; = wy
(1 —-1B)x;, = w;
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What about random walks?

Consider our random walk model

(1 =1B)x;, = w,
U
1-1B=0
—1B = -1
B=1

Random walks are not stationary because B =1 % 1
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Stationary AR(1) models

We can define a parameter space over which all AR(1) models are stationary

X = Ppxi—1 + wy
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Stationary AR(1) models

We can define a parameter space over which all AR(1) models are stationary

X = Px—1 +wy
J

X — Ppxim1 = wy

xX; — ¢pBx; = wy

(1 —¢B)x; = w,
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Stationary AR(1) models

For x, = ¢px,_1 + w;, we have

(1 = ¢B)x; = w,
2
1—¢B =0
—¢B = —1
1

B=_
¢

U

1
B=$>1iff0<gb<1
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Stationary AR(1) models

What if ¢ is negative, such that x, = —¢x,_1 + w,?

X = —px—1 + wy
J

X + Ppxi1 = wy

X + ¢pBx, = w;,

(1 +¢B)x, = w,

36/84



Stationary AR(1) models

For x, = —¢px,_1 + w;, we have
(1 + ¢B)x; = w;
2
l1+¢B =0
¢B = —1
1
B=—
¢
2

1
B=—$>liﬁ“—l<gb<0
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Stationary AR(1) models

Thus, AR(1) models are stationary if and only if || < 1
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Coefficients of AR(1) models
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Coefficients of AR(1) models
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Autocorrelation function (ACF)

Recall that the autocorrelation function (py) measures the correlation between
{x;} and a shifted version of itself {x;x }
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ACF for AR(1) models
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ACF for AR(1) models
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Partial autocorrelation funcion (PACF)

Recall that the partial autocorrelation function (¢;) measures the correlation
between {x;} and a shifted version of itself {x;,.x }, with the linear
dependence of {x;_1, X;—2, ... , X;—;—1 } removed
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ACF & PACF for AR(p) models
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PACF for AR(p) models
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Do you see the link between the order p and lag k?
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Using ACF & PACF for model ID

AR(p) Tails off slowly Cuts off after lag p
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Moving average (MA) models

Moving average models are most commonly used for forecasting a future
state
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Moving average (MA) models

A moving average model of order g, or MA(q), is defined as
X = W + elwt_l + QQW[_Q + e+ qut_q
where w; is white noise

Each of the x; is a sum of the most recent error terms
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Moving average (MA) models

A moving average model of order g, or MA(q), is defined as
X = W + elwt_l + QQW[_Q + e+ qut_q
where w; is white noise

Each of the x; is a sum of the most recent error terms

Thus, all MA processes are stationary because they are finite sums of
stationary WN processes
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Examples of MA(g) models

MA(1): x;= wy+0.7 wy_4 MA(2): x;= wi— wi_1+0.7 wyp

i A

Xi
Xi

Time Time
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ACF & PACF for MA(g) models
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MA(3) with 8; = -0.7, 8, = 0.2, 6 =
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ACF for MA(g) models
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Do you see the link between the order g and lag k?

53/84



Using ACF & PACF for model ID

AR(p) Tails off slowly Cuts off after lag p

MA(q) Cuts off after lag g Tails off slowly

54/84



AR(p) model as an MA(c0) model

It is possible to write an AR(p) model as an MA(co) model
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AR(1) model as an MA(co0) model

For example, consider an AR(1) model

X = Ppxi—1 + wy
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AR(1) model as an MA(co0) model

For example, consider an AR(1) model

X = Ppxi—1 + wy

2

Xi—1 = Pxi—2 + Wiy
2

X2 = PXp—3 + W2
2

Xi—3 = Pxr—4 + Wi3
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AR(1) model as an MA(co0) model

Substituting in the expression for x;_; into that for x;

Xt = Pxi—1 + wy

U

Xi—1 = Pxp—2 + Wy
J
Xt = ¢(¢xt—2 + wi_1) + wy

Xt = ¢2xt—2 + pwi + w;
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AR(1) model as an MA(co0) model

And repeated substitutions yields

Xy = ¢2xt—2 + Ppwi—1 + wy

2

Xt = ¢3xt—3 + ¢2Wt—2 + pwi—1 + wy
2

X = P xa + Wiz + Pwisa + Pwimy + wy
2

1
Xt = wr + pwig + ¢2Wt—2 paliie Cbsz—k + ¢k+ Xt—k—1
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AR(1) model as an MA(co0) model

If our AR(1) model is stationary, then

[P <1

which then implies that

lim "' =0

k— 00
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AR(1) model as an MA(co0) model

If our AR(1) model is stationary, then

[P <1

which then implies that

lim "' =0

k— 00

and hence

1
Xr = W + dwg + ¢2Wt—2 + e+ Cbkwt—k + ¢k+ Xt—k—1
2
k
Xt = Wi+ pwest + Pwig + o+ Pwiy
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Invertible MA(g) models

An MA(q) process is invertible if it can be written as a stationary
autoregressive process of infinite order without an error term

Xy = w; + (91Wt_1 + szt_z + e+ qut_q

U7

(G0)
k
Wy = X + Z(—Q) Xi—k
k=1
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Invertible MA(g) models

Q: Why do we care if an MA(g) model is invertible?

A: It helps us identify the model’s parameters
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Invertible MA(g) models

For example, these MA(1) models are equivalent

1 :
Xt = Wy + th_l with Wy ~~ N(O, 25)

0

Xt = Wy + Swt_l with W ~ N(O, 1)
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Variance of an MA(1) model

The variance of x; is given by

1
X, = w; + th—l with w; ~ N(O, 25)
2
Var(x;) = Var(w;) + <

1
=25+ (¢ )
25

=25+1
= 26

) Var(w;_1)
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Variance of an MA(1) model

The variance of x; is given by

x; = w; + 5w, withw; ~ N(O, 1)
2
Var(x;) = Var(w;) + (25)Var(w,_;)
=14+ (251
=14+25
= 26
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Rewriting an MA(1) model

We can rewrite an MA(1) model in terms of x

Xt = wW; + th_l

U

Wy = X — th_l
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Rewriting an MA(1) model

And now we can substitute in previous expressions for w;

Wy =X — 0w,

U

W] = X1 — Owio

U

w, =x, — 0(x,—; — Ow,_3)

W = X — Ox—1 — 92Wt—2

k

— k+1
W =X —Oxi ) — o — 0" X — 07 Wiy
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Invertible MA(1) model

If we constrain |0| < 1, then

lim (=) 'w,__; =0

k— o0
and
k k+1
Wr =X —Oxp—1 — o = 0" — 0" Wi
— k
Wy =X — Ox;_g — o — 07X

69/84



Autoregressive moving average models

An autoregressive moving average, or ARMA(p,q), model is written as

Xt = ¢1xt_1 + -+ ¢pxt_p + w; + (91WZ_1 + e+ qut_q
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Autoregressive moving average models

We can write an ARMA(p,q) model using the backshift operator
¢p (B )x, = 6,(BY)w,
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Autoregressive moving average models

We can write an ARMA(p,q) model using the backshift operator
¢p(BP)x, = 0,(BN)w,
ARMA models are stationary if all roots of ¢,(B) > 1

ARMA models are invertible if all roots of 6,(B) > 1
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Examples of ARMA(p,q) models
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ACF for ARMA(p,g) models
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PACF for ARMA(p,g) models

Partial ACF
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Using ACF & PACF for model ID

AR(p) Tails off slowly Cuts off after lag p
MA(q) Cuts off after lag g Tails off slowly
ARMA(p,q) Tails off slowly Tails off slowly
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NONSTATIONARY MODELS
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Autoregressive integrated moving average
(ARIMA) models

If the data do not appear stationary, differencing can help

This leads to the class of autoregressive integrated moving average (ARIMA)
models

ARIMA models are indexed with orders (p,d,q) where d indicates the order of
differencing
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ARIMA(p,d,q) models

Definition

{x,} follows an ARIMA(p,d,q) process if (1 — B)?x, is an ARMA(p,q) process
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ARIMA(p,d,q) models

An example

Consider an ARMA(1,0) = AR(1) process where

xp =1+ Px—1 +wy
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ARIMA(p,d,q) models

An example

Consider an ARMA(1,0) = AR(1) process where

xr = (L + @)x—1 +wy
2
X = X—1 + Ppx—1 + wy
X — Xp—1 = Px—1 +wy
(1 = B)x; = ¢dpx—1 + wy

So x; is indeed an ARIMA(1,1,0) process
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ARIMA(p,d,q) models
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ARIMA(p,d,q) models
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Topics for today

Review

- White noise

- Random walks
Autoregressive (AR) models
Moving average (MA) models

Autoregressive moving average (ARMA) models

Using ACF & PACF for model ID
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