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Topics for today

Review

Autoregressive (AR) models

Moving average (MA) models

Autoregressive moving average (ARMA) models

Using ACF & PACF for model ID
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Random walks

·

·
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Code for today

You can find the R code for these lecture notes and other related exercises
here.
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file:///Users/scheuerl/Documents/GitHub/atsa/Lectures/Week%202/lec_03_ARMA_models.R


White noise (WN)

A time series  is discrete white noise if its values are

The distributional form for  is flexible

{ }wt

1. independent

2. identically distributed with a mean of zero

{ }wt
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White noise (WN)

= 2 − 1; ∼ Bernoulli(0.5)wt et et
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Gaussian white noise

We often assume so-called Gaussian white noise, whereby

and the following apply as well

    autocovariance:  

    autocorrelation:   

∼ N(0, )wt σ2

= {γk
σ2

0

if k = 0

if k ≥ 1

= {ρk
1

0

if k = 0

if k ≥ 1
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Gaussian white noise

∼ N(0, 1)wt
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Random walk (RW)

A time series  is a random walk if{ }xt

1. 

2.  is white noise

= +xt xt−1 wt

wt
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Random walk (RW)

= + ; ∼ N(0, 1)xt xt−1 wt wt
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Random walk (RW)

Of note: Random walks are extremely flexible models and can be fit to many
kinds of time series
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Biased random walk

A biased random walk (or random walk with drift) is written as

where  is the bias (drift) per time step and  is white noise

= + u +xt xt−1 wt

u wt
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Biased random walk

= + 1 + ; ∼ N(0, 4)xt xt−1 wt wt
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Differencing a biased random walk

First-differencing a biased random walk yields a constant mean (level)  plus
white noise

u

xt

∇(xt

−xt xt−1

−xt xt−1

= + u +xt−1 wt

⇓

= + u + )xt−1 wt

= + u + −xt−1 wt xt−1

= u + wt
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Differencing a biased random walk

− = 1 + ; ∼ N(0, 1)xt xt−1 wt wt
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Linear stationary models



Linear stationary models

We saw last week that linear filters are a useful way of modeling time series

Here we extend those ideas to a general class of models call autoregressive
moving average (ARMA) models
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Autoregressive (AR) models

Autoregressive models are widely used in ecology to treat a current state of
nature as a function its past state(s)
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Autoregressive (AR) models

An autoregressive model of order p, or AR(p), is defined as

where we assume

= + +⋯ + +xt ϕ1xt−1 ϕ2xt−2 ϕpxt−p wt

1.  is white noise

2.  for an order-p process

wt

≠ 0ϕp
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Examples of AR(p) models

AR(1)

AR(1) with  (random walk)

AR(2)

= 0.5 +xt xt−1 wt

= 1ϕ1

= +xt xt−1 wt

= −0.2 + 0.4 +xt xt−1 xt−2 wt
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Examples of AR(p) models
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Stationary AR(p) models

Recall that stationary processes have the following properties

We seek a means for identifying whether our AR(p) models are also
stationary

1. no systematic change in the mean or variance

2. no systematic trend

3. no periodic variations or seasonality
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Stationary AR(p) models

We can write out an AR(p) model using the backshift operator

= + +⋯ + +xt ϕ1xt−1 ϕ2xt−2 ϕpxt−p wt

⇓

− − −⋯ −xt ϕ1xt−1 ϕ2xt−2 ϕpxt−p

(1 − B − −⋯ − )ϕ1 ϕ2B
2 ϕpB

p
xt

( )ϕp B
p

xt

= wt

= wt

= wt
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Stationary AR(p) models

If we treat  as a number (or numbers), we can out write the characteristic
equation as

To be stationary, all roots of the characteristic equation must exceed 1 in
absolute value

B

(B) =ϕp xt wt

⇓

( ) = 0ϕp B
p
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Stationary AR(p) models

For example, consider this AR(1) model from earlier

= 0.5 +xt xt−1 wt
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Stationary AR(p) models

For example, consider this AR(1) model from earlier

= 0.5 +xt xt−1 wt

⇓

− 0.5xt xt−1

− 0.5Bxt xt

(1 − 0.5B)xt

= wt

= wt

= wt
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Stationary AR(p) models

For example, consider this AR(1) model from earlier

This model is indeed stationary because 

(1 − 0.5B)xt

⇓

1 − 0.5B

−0.5B

B

= wt

= 0

= −1

= 2

B > 1
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Stationary AR(p) models

What about this AR(2) model from earlier?

= −0.2 + 0.4 +xt xt−1 xt−2 wt
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Stationary AR(p) models

What about this AR(2) model from earlier?

= −0.2 + 0.4 +xt xt−1 xt−2 wt

⇓

+ 0.2 − 0.4xt xt−1 xt−2

+ 0.2B − 0.4xt xt B
2
xt

(1 + 0.2B − 0.4 )B
2

xt

= wt

= wt

= wt
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Stationary AR(p) models

What about this AR(2) model from earlier?

This model is not stationary because only 

(1 + 0.2B − 0.4 ) =B
2

xt wt

⇓

1 + 0.2B − 0.4 = 0B
2

⇓

≈ −1.35 and  ≈ 1.85B1 B2

> 1B2
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What about random walks?

Consider our random walk model

= +xt xt−1 wt
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What about random walks?

Consider our random walk model

= +xt xt−1 wt

⇓

−xt xt−1

− 1Bxt xt

(1 − 1B)xt

= wt

= wt

= wt
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What about random walks?

Consider our random walk model

Random walks are not stationary because 

−xt xt−1

− 1Bxt xt

(1 − 1B)xt

⇓

1 − 1B

−1B

B

= wt

= wt

= wt

= 0

= −1

= 1

B = 1 ≯ 1
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Stationary AR(1) models

We can define a parameter space over which all AR(1) models are stationary

= ϕ +xt xt−1 wt
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Stationary AR(1) models

We can define a parameter space over which all AR(1) models are stationary

= ϕ +xt xt−1 wt

⇓

− ϕxt xt−1

− ϕBxt xt

(1 − ϕB)xt

= wt

= wt

= wt
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Stationary AR(1) models

For , we have= ϕ +xt xt−1 wt

(1 − ϕB) =xt wt

⇓

1 − ϕB

−ϕB

B

= 0

= −1

=
1

ϕ

⇓

B = > 1 iff 0 < ϕ < 1
1

ϕ
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Stationary AR(1) models

What if  is negative, such that ?ϕ = −ϕ +xt xt−1 wt

= −ϕ +xt xt−1 wt

⇓

+ ϕxt xt−1

+ ϕBxt xt

(1 + ϕB)xt

= wt

= wt

= wt
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Stationary AR(1) models

For , we have= −ϕ +xt xt−1 wt

(1 + ϕB) =xt wt

⇓

1 + ϕB

ϕB

B

= 0

= −1

= −
1

ϕ

⇓

B = − > 1 iff  −1 < ϕ < 0
1

ϕ
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Stationary AR(1) models

Thus, AR(1) models are stationary if and only if |ϕ| < 1
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Coefficients of AR(1) models

Same value, but different sign
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Coefficients of AR(1) models

Both positive, but different magnitude
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Autocorrelation function (ACF)

Recall that the autocorrelation function ( ) measures the correlation between
 and a shifted version of itself 

ρk

{ }xt { }xt+k
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ACF for AR(1) models

ACF oscillates for model with −ϕ
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ACF for AR(1) models

For model with large , ACF has longer tailϕ
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Partial autocorrelation funcion (PACF)

Recall that the partial autocorrelation function ( ) measures the correlation
between  and a shifted version of itself , with the linear
dependence of  removed

ϕk

{ }xt { }xt+k

{ , , … , }xt−1 xt−2 xt−k−1

44/84



ACF & PACF for AR(p) models
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PACF for AR(p) models

Do you see the link between the order p and lag k?
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Using ACF & PACF for model ID

Model ACF PACF

AR(p) Tails off slowly Cuts off after lag p
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Moving average (MA) models

Moving average models are most commonly used for forecasting a future
state
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Moving average (MA) models

A moving average model of order q, or MA(q), is defined as

where  is white noise

Each of the  is a sum of the most recent error terms

= + + +⋯ +xt wt θ1wt−1 θ2wt−2 θqwt−q

wt

xt
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Moving average (MA) models

A moving average model of order q, or MA(q), is defined as

where  is white noise

Each of the  is a sum of the most recent error terms

Thus, all MA processes are stationary because they are finite sums of
stationary WN processes

= + + +⋯ +xt wt θ1wt−1 θ2wt−2 θqwt−q

wt

xt
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Examples of MA(q) models
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ACF & PACF for MA(q) models
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ACF for MA(q) models

Do you see the link between the order q and lag k?

53/84



Using ACF & PACF for model ID

Model ACF PACF

AR(p) Tails off slowly Cuts off after lag p

MA(q) Cuts off after lag q Tails off slowly
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AR(p) model as an MA( ) model

It is possible to write an AR(p) model as an MA( ) model

∞

∞
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AR(1) model as an MA( ) model

For example, consider an AR(1) model

∞

= ϕ +xt xt−1 wt
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AR(1) model as an MA( ) model

For example, consider an AR(1) model

∞

= ϕ +xt xt−1 wt

⇓

= ϕ +xt−1 xt−2 wt−1

⇓

= ϕ +xt−2 xt−3 wt−2

⇓

= ϕ +xt−3 xt−4 wt−3
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AR(1) model as an MA( ) model

Substituting in the expression for  into that for 

∞

xt−1 xt

= ϕ +xt xt−1 wt

⇓

= ϕ +xt−1 xt−2 wt−1

⇓

= ϕ(ϕ + ) +xt xt−2 wt−1 wt

= + ϕ +xt ϕ2
xt−2 wt−1 wt
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AR(1) model as an MA( ) model

And repeated substitutions yields

∞

xt

xt

xt

xt

= + ϕ +ϕ2
xt−2 wt−1 wt

⇓

= + + ϕ +ϕ3
xt−3 ϕ2

wt−2 wt−1 wt

⇓

= + + + ϕ +ϕ4
xt−4 ϕ3

wt−3 ϕ2
wt−2 wt−1 wt

⇓

= + ϕ + +⋯ + +wt wt−1 ϕ2
wt−2 ϕk

wt−k ϕk+1
xt−k−1
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AR(1) model as an MA( ) model

If our AR(1) model is stationary, then

which then implies that

∞

|ϕ| < 1

= 0lim
k→∞

ϕk+1
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AR(1) model as an MA( ) model

If our AR(1) model is stationary, then

which then implies that

and hence

∞

|ϕ| < 1

= 0lim
k→∞

ϕk+1

xt

xt

= + ϕ + +⋯ + +wt wt−1 ϕ2
wt−2 ϕk

wt−k ϕk+1
xt−k−1

⇓

= + ϕ + +⋯ +wt wt−1 ϕ2
wt−2 ϕk

wt−k
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Invertible MA(q) models

An MA(q) process is invertible if it can be written as a stationary
autoregressive process of infinite order without an error term

= + + +⋯ +xt wt θ1wt−1 θ2wt−2 θqwt−q

⇓?

= + (−θwt xt ∑
k=1

∞

)k
xt−k
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Invertible MA(q) models

Q: Why do we care if an MA(q) model is invertible?

A: It helps us identify the model’s parameters
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Invertible MA(q) models

For example, these MA(1) models are equivalent

= +  with  ∼  N(0, 25)xt wt

1

5
wt−1 wt

⇕

= + 5  with  ∼  N(0, 1)xt wt wt−1 wt
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Variance of an MA(1) model

The variance of  is given byxt

= +  with  ∼  N(0, 25)xt wt

1

5
wt−1 wt

⇓

Var( )xt = Var( ) + ( )Var( )wt

1

25
wt−1

= 25 + ( ) 25
1

25

= 25 + 1

= 26
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Variance of an MA(1) model

The variance of  is given byxt

= + 5  with  ∼  N(0, 1)xt wt wt−1 wt

⇓

Var( )xt = Var( ) + (25)Var( )wt wt−1

= 1 + (25)1

= 1 + 25

= 26
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Rewriting an MA(1) model

We can rewrite an MA(1) model in terms of x

= + θxt wt wt−1

⇓

= − θwt xt wt−1
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Rewriting an MA(1) model

And now we can substitute in previous expressions for wt

wt

wt−1

wt

wt

wt

= − θxt wt−1

⇓

= − θxt−1 wt−2

⇓

= − θ( − θ )xt xt−1 wt−2

= − θ −xt xt−1 θ2
wt−2

  ⋮

= − θ −⋯ − −xt xt−1 θk
xt−k θk+1

wt−k−1
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Invertible MA(1) model

If we constrain , then

and

|θ| < 1

(−θ = 0lim
k→∞

)k+1
wt−k−1

wt

wt

wt

= − θ −⋯ − −xt xt−1 θk
xt−k θk+1

wt−k−1

⇓

= − θ −⋯ −xt xt−1 θk
xt−k

= + (−θxt ∑
k=1

∞

)k
xt−k
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Autoregressive moving average models

An autoregressive moving average, or ARMA(p,q), model is written as

= +⋯ + + + +⋯ +xt ϕ1xt−1 ϕpxt−p wt θ1wt−1 θqwt−q

70/84



Autoregressive moving average models

We can write an ARMA(p,q) model using the backshift operator

( ) = ( )ϕp B
p

xt θq B
q

wt
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Autoregressive moving average models

We can write an ARMA(p,q) model using the backshift operator

ARMA models are stationary if all roots of 

ARMA models are invertible if all roots of 

( ) = ( )ϕp B
p

xt θq B
q

wt

(B) > 1ϕp

(B) > 1θq
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Examples of ARMA(p,q) models
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ACF for ARMA(p,q) models
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PACF for ARMA(p,q) models
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Using ACF & PACF for model ID

Model ACF PACF

AR(p) Tails off slowly Cuts off after lag p

MA(q) Cuts off after lag q Tails off slowly

ARMA(p,q) Tails off slowly Tails off slowly
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NONSTATIONARY MODELS
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Autoregressive integrated moving average
(ARIMA) models

If the data do not appear stationary, differencing can help

This leads to the class of autoregressive integrated moving average (ARIMA)
models

ARIMA models are indexed with orders (p,d,q) where d indicates the order of
differencing
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ARIMA(p,d,q) models
Definition

 follows an ARIMA(p,d,q) process if  is an ARMA(p,q) process{ }xt (1 − B)d
xt
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ARIMA(p,d,q) models
An example

Consider an ARMA(1,0) = AR(1) process where

= (1 + ϕ) +xt xt−1 wt
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ARIMA(p,d,q) models
An example

Consider an ARMA(1,0) = AR(1) process where

So  is indeed an ARIMA(1,1,0) process

= (1 + ϕ) +xt xt−1 wt

⇓

xt

−xt xt−1

(1 − B)xt

= + ϕ +xt−1 xt−1 wt

= ϕ +xt−1 wt

= ϕ +xt−1 wt

xt
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ARIMA(p,d,q) models
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ARIMA(p,d,q) models
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