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Topics for today

Characteristics of time series

Expectation, mean & variance
Covariance & correlation

- Stationarity
- Autocovariance & autocorrelation

Correlograms
White noise
Random walks

Backshift & difference operators
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Code for today

You can find the R code for these lecture notes and other related exercises
here.
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file:///Users/scheuerl/Documents/GitHub/atsa/Lectures/Week%201/lec_02_covariance_stationarity.R

Expectation & the mean

The expectation (E) of a variable is its mean value in the population
E(x) = meanofx = u
We can estimate u from a sample as

m=%2xi

=1
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Variance

E([x — u]?) = expected deviations of x about y

E([x — /4]2) = variance of x = o7
We can estimate ¢ from a sample as

| N
2 2
§° = N1 i:EI (x; — m)
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Covariance

If we have two variables, x and y, we can generalize variance

o* = B([x; — pllx; — ul)

into covariance

Yry = B(xi — pellyi — py])
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Covariance

If we have two variables, x and y, we can generalize variance
6® = E(lx; — ullx; — p)
into covariance
Vey = B(lxi = pellyi = pyl)

We can estimate y,, from a sample as

1
N -1

N
Cov(x,y) = 2 (x; — my)(y; — my)
i=1
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Graphical example of covariance
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Graphical example of covariance
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Graphical example of covariance
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Correlation

Correlation is a dimensionless measure of the linear association between 2
variables, x &y

It is simply the covariance standardized by the standard deviations

Vx,y
00y

Pxy =

-1 <p,y <1
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Correlation

Correlation is a dimensionless measure of the linear association between 2
variables x &y

It is simply the covariance standardized by the standard deviations

_ Ixy
px,y -
Oy Oy
We can estimate p, ,, from a sample as
Cov(x,y)

Cor(x,y) = .
XDy
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Stationarity & the mean

Consider a single value, x;

13/74



Stationarity & the mean

Consider a single value, x;

E(x,) is taken across an ensemble of all possible time series
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Stationarity & the mean
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Stationarity & the mean
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Our single realization is our estimate!

16/74



Stationarity & the mean

If E(x;) is constant across time, we say the time series is stationary in the
mean
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Stationarity of time series

Stationarity is a convenient assumption that allows us to describe the
statistical properties of a time series.

In general, a time series is said to be stationary if there is

1. no systematic change in the mean or variance
2. no systematic trend

3. no periodic variations or seasonality
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|dentifying stationarity
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|dentifying stationarity

Our eyes are really bad at identifying stationarity, so we will learn some tools
to help us
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Autocovariance function (ACVF)

For stationary ts, we define the autocovariance function (yy) as

vi = E(lx, — pllxen — pl)

which means that

vo = E([x; — ullx; — pu]) = o*
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Autocovariance function (ACVF)

For stationary ts, we define the autocovariance function (yy) as
vk = B — pllxee — pl)
“Smooth” time series have large ACVF for large k

“Choppy” time series have ACVF near 0 for small k
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Autocovariance function (ACVF)

For stationary ts, we define the autocovariance function (yy) as

vi = E(lx, — pllxen — pl)

We can estimate y; from a sample as

1 N—k
Ck = N ; (x; — m)(Xppr — m)
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Autocorrelation function (ACF)

The autocorrelation function (ACF) is simply the ACVF normalized by the
variance

Yk Yk
pk — —2 = —
9 70

The ACF measures the correlation of a time series against a time-shifted
version of itself
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Autocorrelation function (ACF)

The autocorrelation function (ACF) is simply the ACVF normalized by the
variance

Yk Yk
9 70

The ACF measures the correlation of a time series against a time-shifted
version of itself

We can estimate ACF from a sample as

Ck
Co

ry, =
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Properties of the ACF

The ACF has several important properties:
- —1<rn<l

C T =T

" 1 of a periodic function is itself periodic

 ry for the sum of 2 independent variables is the sum of r; for each of
them
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The correlogram
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The correlogram
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The correlogram
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Estimating the ACFin R

acf (ts_object)
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ACF for deterministic forms
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ACF for deterministic forms

Discrete (monthly) sine wave

o

|l

"{_
I

IIIIIII i



ACF for deterministic forms

Linear trend + seasonal effect
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ACF for deterministic forms

Sequence of 10 random numbers repeated 10 times
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Induced autocorrelation

Recall the transitive property, whereby

fA =BandB = C,thenA =C

35/74



Induced autocorrelation

Recall the transitive property, whereby
fA=BandB = C,thenA =C
which suggests that

Ifx x yandy « z,thenx « 7
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Induced autocorrelation

Recall the transitive property, whereby
fA=BandB = C,thenA =C
which suggests that

Ifx x yandy « z,thenx « 7

and thus

Ifxt X Xi4-1 and Xt+1 X Xpy2, then X X X¢y2
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Partial autocorrelation funcion (PACF)

The partial autocorrelation function (¢;) measures the correlation between a

series x; and x4 with the linear dependence of {x;—1, X;—2, ... , X1—k—1 }
removed
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Partial autocorrelation funcion (PACF)

The partial autocorrelation function (¢;) measures the correlation between a

series x; and x4 with the linear dependence of {x;—1, X;—2, ... , X1—k—1 }
removed

We can estimate ¢ from a sample as

k—1 k—1

¢ . COI'(Xl,)C())=,01 ifk =1
T Cor(e — X xg =Y ik >2

k—

I
X, = Pix—1 + Poxp—o + o + frix

Xt = Bixg + Paxa + o+ Pro1 i
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Lake Washington phytoplankton
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Lake Washington phytoplankton
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Lake Washington phytoplankton
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ACF & PACF in model selection

We will see that the ACF & PACF are very useful for identifying the orders of
ARMA models
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Cross-covariance function (CCVF)

Often we want to look for relationships between 2 different time series

We can extend the notion of covariance to cross-covariance
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Cross-covariance function (CCVF)

Often we want to look for relationships between 2 different time series

We can extend the notion of covariance to cross-covariance

We can estimate the CCVF (g;”) from a sample as

1 N—k
gi’y = N Z O — my)(Yigk — My)
=1
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Cross-correlation function (CCF)

The cross-correlation function is the CCVF normalized by the standard
deviations of x &y

)C,y
xy _ 8k

r
k SxSy

Just as with other measures of correlation

-1 <’ <1
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Estimating the CCFinR

ccf(x, y)

Note: the lag k value returned by ccf (%, y) is the correlation between
x[t+k] and y[t]

In an explanatory context, we often think of y = f(x), so it's helpful to use
ccf(y, x) andonly consider positive lags
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Example of cross-correlation

120
|

Sunspot activity
0 20 40 60 80
] ] ] ]
Cross-correlation
02 -01 00 01 02 0.3
| | |
I
1
|
I
1
|
I
1
|
I
1
|
I I
——————
I |
I
1
|
I
1

| |
T T
] |
| |
| T
| I T
| L
| J—
’—
O
N R
R

o
8 -]
2 ©
Z. _______________
- _
g § _
g =4 I I I [ I [ I
5 - 15 10 5 0 5 10 15
3 o
o
E S T
3 [3Y]
Z —
o

I I I I I I
1820 1840 1860 1880 1900 1920

48/74



SOME SIMPLE MODELS

49/74



White noise (WN)

A time series {w, } is discrete white noise if its values are

1. independent

2. identically distributed with a mean of zero
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White noise (WN)

A time series {w, } is discrete white noise if its values are

1. independent

2. identically distributed with a mean of zero

Note that distributional form for {w, } is flexible

51/74



White noise (WN)
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w; = 2¢;, — 1; e, ~ Bernoulli(0.5)
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Gaussian white noise

We often assume so-called Gaussian white noise, whereby

w, ~ N(0, 6%)
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Gaussian white noise

We often assume so-called Gaussian white noise, whereby

w, ~ N(0, 6%)
and the following apply as well
: , { o2 ifk=0
autocovariance: y; = ,
0 ifk>1
autocorrelation: - { btk=0
PR ifk > 1
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Gaussian white noise
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Random walk (RW)

A time series {x;} is a random walk if
1., = X;—1 + Wy

2. W; is white noise
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Random walk (RW)

The following apply to random walks
mean: pu, =0

autocovariance: yi(t) = to”

tc?

\/ t62(t+k)o?

autocorrelation: p;(f) =
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Random walk (RW)

The following apply to random walks
mean: pu, =0

autocovariance: yi(t) = to”

tc?

\/ t62(t+k)o?

autocorrelation: p;(f) =

Note: Random walks are not stationary
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Random walk (RW)
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SOME IMPORTANT OPERATORS
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The backshift shift operator

The backshift shift operator (B) is an important function in time series
analysis, which we define as

Bx; = x;_
or more generally as

k
Bx; = x4«
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The backshift shift operator

For example, a random walk with
Xt = Xi—1 + Wy

can be written as

Xt = th -+ Wy
x; — Bx; = w;
(1 =B)x, =w,

x == B)_lwt
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The difference operator

The difference operator (V) is another important function in time series
analysis, which we define as

th — .x[ — xt_l
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The difference operator

The difference operator (V) is another important function in time series
analysis, which we define as

VX = X — X
For example, first-differencing a random walk yields white noise

VX, = Xi—1 + Wy
Xt — Xp—1 = Xp—1 + Wi — X4—1

Xt — Xp—1 = Wy
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The difference operator

The difference operator and the backshift operator are related

VK = (1 = B)X
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The difference operator

The difference operator and the backshift operator are related
VK = (1 — B)
For example

Vx, = (1 — B)x;
Xt — Xi—1 = Xy — th

Xt — Xp—1 = Xp — Xp—1
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Differencing to remove a trend

Differencing is a simple means for removing a trend
The 1st-difference removes a linear trend

A 2nd-difference will remove a quadratic trend
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Differencing to remove a trend
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Differencing to remove seasonality

Differencing is a simple means for removing a seasonal effect

Using a 1st-difference with k = period removes both trend & seasonal
effects
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Differencing to remove seasonality
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Differencing to remove a trend in R

We can use diff () to easily compute differences

diff(x,
lag,
differences

)
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Differencing to remove a trend in R

diff(x,
lag,
differences

)
lag (h) specifiest — h
lag = 1 (default) is for non-seasonal data

lag = 4 would work for quarterly data or

lag = 12 for monthly data
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Differencing to remove a trend in R

diff(x,
lag,
differences

)
differences is the number of differencing operations

differences = 1 (default)is for a linear trend

differences = 2 is for a quadratic trend
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Topics for today

Characteristics of time series

Expectation, mean & variance
Covariance & correlation

- Stationarity
- Autocovariance & autocorrelation

Correlograms
White noise
Random walks

Backshift & difference operators
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