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Code for today

You can find the R code for these lecture notes and other related exercises
here.
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file:///Users/scheuerl/Documents/GitHub/atsa/Lectures/Week%201/lec_02_covariance_stationarity.R


Expectation & the mean

The expectation ( ) of a variable is its mean value in the population

 mean of 

We can estimate  from a sample as

E

E(x) ≡ x = μ

μ

m =
1

N ∑
i=1

N

xi
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Variance

 expected deviations of  about 

 variance of 

We can estimate  from a sample as

E([x − μ ) ≡]2 x μ

E([x − μ ) ≡]2 x = σ2

σ2

= ( − ms2
1

N − 1 ∑
i=1

N

xi )2
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Covariance

If we have two variables,  and , we can generalize variance

into covariance

x y

= E([ − μ][ − μ])σ2 xi xi

= E([ − ][ − ])γx,y xi μx yi μy
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Covariance

If we have two variables,  and , we can generalize variance

into covariance

We can estimate  from a sample as

x y

= E([ − μ][ − μ])σ2 xi xi

= E([ − ][ − ])γx,y xi μx yi μy

γx,y

Cov(x, y) = ( − )( − )
1

N − 1 ∑
i=1

N

xi mx yi my
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Graphical example of covariance
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Graphical example of covariance
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Graphical example of covariance
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Correlation

Correlation is a dimensionless measure of the linear association between 2
variables,  & 

It is simply the covariance standardized by the standard deviations

x y

=ρx,y

γx,y

σxσy

−1 < < 1ρx,y
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Correlation

Correlation is a dimensionless measure of the linear association between 2
variables  & 

It is simply the covariance standardized by the standard deviations

We can estimate  from a sample as

x y

=ρx,y

γx,y

σxσy

ρx,y

Cor(x, y) =
Cov(x, y)

sxsy
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Stationarity & the mean

Consider a single value, xt
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Stationarity & the mean

Consider a single value, 

 is taken across an ensemble of all possible time series

xt

E( )xt
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Stationarity & the mean
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Stationarity & the mean

Our single realization is our estimate!
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Stationarity & the mean

If  is constant across time, we say the time series is stationary in the
mean

E( )xt
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Stationarity of time series

Stationarity is a convenient assumption that allows us to describe the
statistical properties of a time series.

In general, a time series is said to be stationary if there is

1. no systematic change in the mean or variance

2. no systematic trend

3. no periodic variations or seasonality
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Identifying stationarity
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Identifying stationarity

Our eyes are really bad at identifying stationarity, so we will learn some tools
to help us
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Autocovariance function (ACVF)

For stationary ts, we define the autocovariance function ( ) as

which means that

γk

= E([ − μ][ − μ])γk xt xt+k

= E([ − μ][ − μ]) =γ0 xt xt σ2
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Autocovariance function (ACVF)

For stationary ts, we define the autocovariance function ( ) as

“Smooth” time series have large ACVF for large 

“Choppy” time series have ACVF near 0 for small 

γk

= E([ − μ][ − μ])γk xt xt+k

k

k
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Autocovariance function (ACVF)

For stationary ts, we define the autocovariance function ( ) as

We can estimate  from a sample as

γk

= E([ − μ][ − μ])γk xt xt+k

γk

= ( − m)( − m)ck

1

N ∑
t=1

N−k

xt xt+k
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Autocorrelation function (ACF)

The autocorrelation function (ACF) is simply the ACVF normalized by the
variance

The ACF measures the correlation of a time series against a time-shifted
version of itself

= =ρk

γk

σ2

γk

γ0
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Autocorrelation function (ACF)

The autocorrelation function (ACF) is simply the ACVF normalized by the
variance

The ACF measures the correlation of a time series against a time-shifted
version of itself

We can estimate ACF from a sample as

= =ρk

γk

σ2

γk

γ0

=rk

ck

c0
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Properties of the ACF

The ACF has several important properties:

· −1 ≤ ≤ 1rk

· =rk r−k

 of a periodic function is itself periodic· rk

 for the sum of 2 independent variables is the sum of  for each of
them

· rk rk
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The correlogram

Graphical output for the ACF
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The correlogram

The ACF at lag = 0 is always 1
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The correlogram

Approximate confidence intervals
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Estimating the ACF in R

acf(ts_object)
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ACF for deterministic forms
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ACF for deterministic forms
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ACF for deterministic forms
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ACF for deterministic forms
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Induced autocorrelation

Recall the transitive property, whereby

If  and , then A = B B = C A = C
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Induced autocorrelation

Recall the transitive property, whereby

If  and , then 

which suggests that

If  and , then 

A = B B = C A = C

x ∝ y y ∝ z x ∝ z
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Induced autocorrelation

Recall the transitive property, whereby

If  and , then 

which suggests that

If  and , then 

and thus

If  and , then 

A = B B = C A = C

x ∝ y y ∝ z x ∝ z

∝xt xt+1 ∝xt+1 xt+2 ∝xt xt+2
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Partial autocorrelation funcion (PACF)

The partial autocorrelation function ( ) measures the correlation between a
series  and  with the linear dependence of 
removed

ϕk

xt xt+k { , , … , }xt−1 xt−2 xt−k−1
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Partial autocorrelation funcion (PACF)

The partial autocorrelation function ( ) measures the correlation between a
series  and  with the linear dependence of 
removed

We can estimate  from a sample as

ϕk

xt xt+k { , , … , }xt−1 xt−2 xt−k−1

ϕk

= {ϕk

Cor( , ) =x1 x0 ρ1

Cor( − , − )xk xk−1
k x0 xk−1

0

if k = 1

if k ≥ 2

= + + ⋯ +xk−1
k β1xk−1 β2xk−2 βk−1x1

= + + ⋯ +xk−1
0

β1x1 β2x2 βk−1xk−1
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Lake Washington phytoplankton
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Lake Washington phytoplankton

Autocorrelation
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Lake Washington phytoplankton

Partial autocorrelation
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ACF & PACF in model selection

We will see that the ACF & PACF are very useful for identifying the orders of
ARMA models
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Cross-covariance function (CCVF)

Often we want to look for relationships between 2 different time series

We can extend the notion of covariance to cross-covariance
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Cross-covariance function (CCVF)

Often we want to look for relationships between 2 different time series

We can extend the notion of covariance to cross-covariance

We can estimate the CCVF  from a sample as( )g
x,y

k

= ( − )( − )g
x,y

k

1

N ∑
t=1

N−k

xt mx yt+k my
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Cross-correlation function (CCF)

The cross-correlation function is the CCVF normalized by the standard
deviations of x & y

Just as with other measures of correlation

=r
x,y

k

g
x,y

k

sxsy

−1 ≤ ≤ 1r
x,y

k
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Estimating the CCF in R

Note: the lag k value returned by ccf(x, y) is the correlation between
x[t+k] and y[t]

In an explanatory context, we often think of , so it’s helpful to use
ccf(y, x) and only consider positive lags

ccf(x, y)

y = f (x)
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Example of cross-correlation
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SOME SIMPLE MODELS
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White noise (WN)

A time series  is discrete white noise if its values are{ }wt

1. independent

2. identically distributed with a mean of zero
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White noise (WN)

A time series  is discrete white noise if its values are

Note that distributional form for  is flexible

{ }wt

1. independent

2. identically distributed with a mean of zero

{ }wt
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White noise (WN)

= 2 − 1; ∼ Bernoulli(0.5)wt et et
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Gaussian white noise

We often assume so-called Gaussian white noise, whereby

∼ N(0, )wt σ2

53/74



Gaussian white noise

We often assume so-called Gaussian white noise, whereby

and the following apply as well

    autocovariance:  

    autocorrelation:   

∼ N(0, )wt σ2

= {γk
σ2

0

if k = 0

if k ≥ 1

= {ρk
1

0

if k = 0

if k ≥ 1
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Gaussian white noise

∼ N(0, 1)wt
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Random walk (RW)

A time series  is a random walk if{ }xt

1. 

2.  is white noise

= +xt xt−1 wt

wt
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Random walk (RW)

The following apply to random walks

    mean:   

    autocovariance:   

    autocorrelation:   

= 0μx

(t) = tγk σ2

(t) =ρk
tσ 2

t (t+k)σ
2

σ
2√
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Random walk (RW)

The following apply to random walks

    mean:   

    autocovariance:   

    autocorrelation:   

Note: Random walks are not stationary

= 0μx

(t) = tγk σ2

(t) =ρk
tσ 2

t (t+k)σ
2

σ
2√
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Random walk (RW)

= + ; ∼ N(0, 1)xt xt−1 wt wt
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SOME IMPORTANT OPERATORS
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The backshift shift operator

The backshift shift operator ( ) is an important function in time series
analysis, which we define as

or more generally as

B

B =xt xt−1

=B
kxt xt−k
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The backshift shift operator

For example, a random walk with

can be written as

= +xt xt−1 wt

xt

− Bxt xt

(1 − B)xt

xt

= B +xt wt

= wt

= wt

= (1 − B)−1wt
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The difference operator

The difference operator ( ) is another important function in time series
analysis, which we define as

∇

∇ = −xt xt xt−1
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The difference operator

The difference operator ( ) is another important function in time series
analysis, which we define as

For example, first-differencing a random walk yields white noise

∇

∇ = −xt xt xt−1

∇xt

−xt xt−1

−xt xt−1

= +xt−1 wt

= + −xt−1 wt xt−1

= wt
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The difference operator

The difference operator and the backshift operator are related

= (1 − B∇k )k
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The difference operator

The difference operator and the backshift operator are related

For example

= (1 − B∇k )k

∇xt

−xt xt−1

−xt xt−1

= (1 − B)xt

= − Bxt xt

= −xt xt−1
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Differencing to remove a trend

Differencing is a simple means for removing a trend

The 1st-difference removes a linear trend

A 2nd-difference will remove a quadratic trend
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Differencing to remove a trend
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Differencing to remove seasonality

Differencing is a simple means for removing a seasonal effect

Using a 1st-difference with  removes both trend & seasonal
effects

k = period

69/74



Differencing to remove seasonality
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Differencing to remove a trend in R

We can use diff() to easily compute differences

diff(x,
     lag,
     differences
     )
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Differencing to remove a trend in R

lag  specifies 

lag = 1 (default) is for non-seasonal data

lag = 4 would work for quarterly data or

lag = 12 for monthly data

diff(x,
     lag,
     differences
     )

(h) t − h

72/74



Differencing to remove a trend in R

differences is the number of differencing operations

differences = 1 (default) is for a linear trend

differences = 2 is for a quadratic trend

diff(x,
     lag,
     differences
     )
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