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Topics for today

Characteristics of time series (ts)
- Whatis a ts?

+ Classifying ts
+ Trends

- Seasonality (periodicity)

Classical decomposition
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What is a time series?

A set of observations taken sequentially in time
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What is a time series?

A ts can be represented as a set

{xlax27~x39 9-xn}
For example,

{10,31,27,42,53, 15}
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Classification of time series

By some index set

Interval across real time; x(?)

* begin/end: t € [1.1,2.5]
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Classification of time series

By some index set

Discrete time; x;

* Equally spaced: t = {1,2,3,4,5}
* Equally spaced w/ missing value: t = {1,2,4,3, 6}
* Unequally spaced: t = {2,3,4,6,9}
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Classification of time series
By the underlying process

Discrete (eg, total # of fish caught per trawl)

Continuous (eg, salinity, temperature)
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Classification of time series

By the number of values recorded

Univariate/scalar (eg, total # of fish caught)

Multivariate/vector (eg, # of each spp of fish caught)
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Classification of time series
By the type of values recorded

Integer (eg, # of fish in 5 min trawl = 2413)
Rational (eg, fraction of unclipped fish =47/951)
Real (eg, fish mass =10.2 g)

Complex (eg, cos(212.43) +j sin(2112.43))
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Classification of time series

We will focus on integers & real-values in discrete time

Univariate (x;)

Multivariate
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Time series objects in R

Time series objects have a special designation in R: ts

ts(data,
start, end,
frequency

)
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Time series objects in R

Time series objects have a special designation in R: ts

ts(data,
start, end,
frequency

)

data should be a vector (univariate)

or a data frame or matrix (multivariate)
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Time series objects in R

Time series objects have a special designation in R: ts

ts(data,
start, end,
frequency

)

start and end give the first and last time indices

For monthly series, specify them as c¢(year, month)
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Time series objects in R

Time series objects have a special designation in R: ts

ts(data,
start, end,
frequency

)

frequency is the number of observations per unit time

For annual series, frequency = 1

For monthly series, frequency = 12
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Time series objects in R

Time series objects have a special designation in R: ts

ts(data,
start, end,
deltat

)

deltat is the fraction of the sampling period
For annual series, deltat = 1

For monthly series, deltat = 1/12
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Time series objects in R

set.seed(507)

## annual data

dat 1 <- rnorm(30)

dat yr <- ts(dat 1,
start = 1991, end = 2020,
frequency = 1)

## monthly data

dat 2 <- rnorm(30*12)

dat mo <- ts(dat 2,
start = ¢(1991, 1), end = c(2020, 12),
frequency = 12)
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Plotting time series objects in R

There is a designated function for plotting ts objects: plot.ts()

plot.ts(ts _object)
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Plotting time series objects in R
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Plotting time series objects in R

We can specify some additional arguments to plot.ts

plot.ts(dat yr,
ylab = expression(italic(x[t])),
las = 1, col = "blue", lwd = 2)
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Plotting time series objects in R
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Analysis of time series



Statistical analyses of time series

Most statistical analyses are concerned with estimating properties of a
population from a sample

For example, we use fish caught in a seine to infer the mean size of fish in a
lake
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Statistical analyses of time series

Time series analysis, however, presents a different situation:

- Although we could vary the length of an observed time series, it is often
impossible to make multiple observations at a given point in time
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Statistical analyses of time series

Time series analysis, however, presents a different situation:

- Although we could vary the length of an observed time series, it is often
impossible to make multiple observations at a given point in time

For example, one can't observe today’s closing price of Microsoft stock more
than once

Thus, conventional statistical procedures, based on large sample estimates,
are inappropriate
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Descriptions of time series

200 —

150 —

100 —

0 20 40 60 80 100
Time

Number of users connected to the internet

26/56



Descriptions of time series
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What is a time series model?

A time series model for {x;} is a specification of the joint distributions of a

sequence of random variables {X;}, of which {x;} is thought to be a
realization
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Joint distributions of random variables
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We have one realization
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Some simple time series models
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Some simple time series models
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Classical decomposition

Model time series {x; } as a combination of
1. trend (m;)
2. seasonal component (s;)

3. remainder (e;)

x,=m,+s;+€t
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Classical decomposition
1. The trend (m;)

We need a way to extract the so-called signal from the noise
One common method is via “linear filters”

Linear filters can be thought of as “smoothing” the data
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Classical decomposition
1. The trend (m;)

Linear filters typically take the form

(ee]
n; = Z AiXir1

I=—00
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Classical decomposition
1. The trend (m;)

For example, a moving average

- 1
My = 2 2a + lxm

1=—a
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Classical decomposition
1. The trend (m;)

For example, a moving average

- 1
My = 2 2a + lxm

1=—a

Ifa = 1, then

m; = —(Xt—l + X + Xt+1)

37/56



Classical decomposition
1. The trend (m;)

For example, a moving average

As a increases, the estimated trend becomes more smooth
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Example of linear filtering
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Example of linear filtering
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Example of linear filtering
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Example of linear filtering
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Classical decomposition

2. Seasonal effect (s;)

Once we have an estimate of the trend 71, we can estimate 3, simply by
subtraction:

A

S = Xx; — Ny
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Classical decomposition
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Classical decomposition

2. Seasonal effect (s;)
But, §; really includes the remainder ¢, as well

S = Xp — My
(5; +e) =x —my
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Classical decomposition

2. Seasonal effect (s;)

So we need to estimate the mean seasonal effect as

R 1
Sjan = 2 (N/12) US15 81358255 vt}

R |
SFeb = Z (N/12) {S29 145526, }

R 1
SDec — 2 (N/IZ) {S127 $245 536, }
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Classical decomposition

3. Remainder (¢e;)

Now we can estimate ¢; via subtraction:

A

et=xt—ﬁ1t—3’t
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Remainder (¢;)
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Let's try a different model

With some other assumptions

1. Log-transform data

2. Linear trend
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Log-transformed data
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The trend (1;)
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Seasonal effect (s;) with error (¢;)
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Mean seasonal effect (s;)
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Remainder (¢;)
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Summary
Today'’s topics

Characteristics of time series (ts)
- What is a ts?

+ Classifying ts

- Trends

+ Seasonality (periodicity)

Classical decomposition
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