What is the frequency domain?
Fourier transforms
Spectral analysis
Wavelets
25 Feb 2021
What is the frequency domain?
Fourier transforms
Spectral analysis
Wavelets
We having been examining changes in \(x_t\) over time
We can think of this as comparing changes in amplitude (displacement) with time
Today we’ll consider how amplitude changes with frequency
French mathematician & physicist best known for his studies of heat transfer
First described what we now call the “greenhouse effect”
Solving the heat equation involves solving partial differential equations conditional on some boundary conditions
\[ \begin{matrix} \large \text{Problem} \\ really \Bigg \downarrow hard \\ \large \text{Solution} \end{matrix} \]
Find \(f(t)\) and \(\hat{f}(t)\), such that
\[ \begin{matrix} \large \text{Problem} && \xrightarrow{f(t)} && \large \text{Transformed problem} \\ really \Bigg \downarrow hard && && much \Bigg \downarrow easier \\ \large \text{Solution} && \xleftarrow{\hat{f}(t)} && \large \text{Transformed solution} \\ \end{matrix} \]
Complex periodic functions can be written as infinite sums of sine waves
\[ f(t) = a_0 + \sum_{k = 1}^\infty a_k \sin(2 \pi f_0 k t + p_k) \]
where
\(k\) is the wave number (index)
\(a_k\) is the amplitude of wave \(k\)
\(f_0\) is the fundamental frequency
\(p_k\) is the phase shift
A finite example
\[ f(t) = \sum_{k = 1}^5 \frac{1}{k} \sin(2 \pi k t + k^2) \]
Here’s an animated example from Wikipedia
We can make use of Euler’s formula
\[ \cos(2 \pi k) + i \sin(2 \pi k) = e^{i 2 \pi k} \]
and write the Fourier transform of \(f(t)\) as
\[ f(t) = \int_{-\infty}^\infty \hat{f}(k) ~ e^{i 2 \pi t k} ~ d k \]
where \(k\) is the frequency
Fourier transform
\[ f_k = \sum_{n=0}^{N-1} x_t ~ e^{-i 2 \pi n k} \]
R uses what’s known as Fast Fourier transform via fft()
, which returns the amplitude at each frequency
ft <- fft(xt) ## often normalize by the length ft <- fft(xt) / length(xt)
Fourier transform
\[ f_k = \sum_{n=0}^{N-1} x_t ~ e^{-i 2 \pi n k} \]
Inverse
\[ x_t = \sum_{k=0}^{N-1} f_k ~ e^{i 2 \pi n k} \]
i <- complex(1, re = 0, im = 1) xx <- rep(NA, TT) kk <- seq(TT) - 1 ## Inverse Fourier transform ## ft <- fft(xt) for(t in kk) { xx[t+1] <- sum(ft * exp(i*2*pi*kk*t/TT)) }
ift <- fft(ft, inverse = TRUE)
Spectral analysis refers to a general way of decomposing time series into their constituent frequencies
Consider a linear regression model for \(\{x_t\}\) with various sines and cosines as predictors
\[ x_t = a_0 + \sum_{k = 1}^{n/2-1} a_k \cos(2 \pi f_0 k t/n) + b_k \sin(2 \pi f_0 k t/n) \]
The periodogram measures the contributions of each frequency \(k\) to \(\{x_t\}\)
\[ P_k = a^2_k + b^2_k \]
spectrum(xt, log = "on") spectrum(xt, log = "off") spectrum(xt, log = "dB")
spectrum(xt, log = "dB")
Density on natural scale & frequency in cycles per time
For an AR(p) process
\[ x_t = \phi_1 x_{t-1} + \phi_2 x_{t-2} + \cdots + \phi_p x_{t-p} + e_t \]
The spectral density is
\[ S(f,\phi_1, \dots, \phi_p, \sigma^2) = \frac{\sigma^2 \Delta t}{\vert 1 - \sum_{k = 1}^p \phi_k e^{-i 2 \pi f k \Delta t} \vert ^2} \]
Spectral analysis works well for
stationary time series
identifying periodic signals corrupted by noise
Spectral analysis works well for
stationary time series
identifying periodic signals corrupted by noise
But…
it’s an inconsistent estimator for most real data sets
it’s generally biased
What if the frequency changes over time?
For non-stationary time series we can use so-called wavelets
A wavelet is a function that is localized in time & frequency
Formally, a wavelet \(\psi\) is defined as
\[ \psi_{\sigma, \tau}(t) = \frac{1}{\sqrt{\vert \sigma \vert}} \psi \left( \frac{t - \tau}{\sigma} \right) \]
where \(\tau\) determines its position & \(\sigma\) determines its frequency
It goes up and down
\[ \int_{-\infty}^{\infty} \psi(t) ~ dt = 0 \]
It has a finite sum
\[ \int_{-\infty}^{\infty} \vert \psi(t) \vert ~ dt < \infty \]
In terms of scaling functions that describe
Dilations \(~~~~~~~~~~~~~~ \psi(t) \rightarrow \psi(2t)\)
Translations \(~~~~~~~~~ \psi(t) \rightarrow \psi(t - 1)\)
More generally,
\[ \psi_{j,k}(t) = 2^{j/2} \psi(2^j t - k) \]
where
\(j\) is the dilation index
\(k\) is the translation index
and
\(2^{j/2}\) is a normalization constant
There are many options for \(\psi(t)\), but we’ll use scaling functions and define
\[ \psi(t) = \sum_{k=0}^K c_k \psi(2x - k) \]
where the \(c_k\) are filter coefficients*
*Note that \(\psi(t)\) gets “smoother” as \(K\) increases
Simple, but commonly used, where \(\small K = 1; ~ c_0 = 1; ~ c_1 = 1\)
\[ \psi(t) = \sum_{k=0}^K c_k \psi(2t - k) \\ \big \Downarrow \\ \psi(t) = \psi(2t) + \psi(2t - 1) \]
The only function that satisfies this is:
\[ \begin{align} \psi(t) &= 1 ~ \text{if} ~ 0 \leq t \leq 1 \\ \psi(t) &= 0 ~ \text{otherwise} \end{align} \]
In terms of the dilation
\[ \begin{align} \psi(2t) &= 1 ~ \text{if} ~ 0 \leq t \leq 0.5 \\ \psi(2t) &= 0 ~ \text{otherwise} \end{align} \]
and translation
\[ \begin{align} \psi(2t - 1) &= 1 ~ \text{if} ~ 0.5 \leq t \leq 1 \\ \psi(2t - 1) &= 0 ~ \text{otherwise} \end{align} \]
Wavelets are created via differencing of scaling functions
\[ \psi(t) = \sum_{k=0}^1 (-1)^k c_k \psi(2t - k) \]
where \((-1)^k\) creates the difference
So-called “child” wavelets are created via dilation & translation
\[ \psi_{j,k}(t) = 2^{j/2} \psi(2^j t - k) \]
The mother Haar wavelet has \(j = 0\)
So-called “child” wavelets are created via dilation & translation
\[ \psi_{j,k}(t) = 2^{j/2} \psi(2^j t - k) \]
The basic Haar wavelet has \(j = 0\)
Setting \(j = 1\) yields a daughter
\[ \psi_{j,k}(t) = \sqrt{2} \psi(2 t - k) \]
\[ \psi(t) = \sum_{k=0}^1 (-1)^k c_k \sqrt{2} \psi(2 t - k) \]
Recall that \((-1)^k\) creates the difference
There are many forms of wavelets, many of which were developed in the past 50 years
Wavelet analysis is used widely in audio & video compression
We’ll use the WaveletComp package, which uses the Morlet wavelet
We’ll also use the L Washington temperature data from the MARSS package
library(WaveletComp) ## L WA temperature data tmp <- MARSS::lakeWAplanktonTrans[,"Temp"] ## WaveletComp needs data as df dat <- data.frame(tmp = tmp)
Use analyze.wavelet()
to estimate the wavelet transform
w_est <- analyze.wavelet(dat, "tmp", ## need both df & colname loess.span = 0, ## no de-trending dt = 1/12, ## monthly sampling lowerPeriod = 1/6, ## default = 2*dt n.sim = 100, verbose = FALSE)
## | | | 0% | |= | 1% | |= | 2% | |== | 3% | |=== | 4% | |==== | 5% | |==== | 6% | |===== | 7% | |====== | 8% | |====== | 9% | |======= | 10% | |======== | 11% | |======== | 12% | |========= | 13% | |========== | 14% | |========== | 15% | |=========== | 16% | |============ | 17% | |============= | 18% | |============= | 19% | |============== | 20% | |=============== | 21% | |=============== | 22% | |================ | 23% | |================= | 24% | |================== | 25% | |================== | 26% | |=================== | 27% | |==================== | 28% | |==================== | 29% | |===================== | 30% | |====================== | 31% | |====================== | 32% | |======================= | 33% | |======================== | 34% | |======================== | 35% | |========================= | 36% | |========================== | 37% | |=========================== | 38% | |=========================== | 39% | |============================ | 40% | |============================= | 41% | |============================= | 42% | |============================== | 43% | |=============================== | 44% | |================================ | 45% | |================================ | 46% | |================================= | 47% | |================================== | 48% | |================================== | 49% | |=================================== | 50% | |==================================== | 51% | |==================================== | 52% | |===================================== | 53% | |====================================== | 54% | |====================================== | 55% | |======================================= | 56% | |======================================== | 57% | |========================================= | 58% | |========================================= | 59% | |========================================== | 60% | |=========================================== | 61% | |=========================================== | 62% | |============================================ | 63% | |============================================= | 64% | |============================================== | 65% | |============================================== | 66% | |=============================================== | 67% | |================================================ | 68% | |================================================ | 69% | |================================================= | 70% | |================================================== | 71% | |================================================== | 72% | |=================================================== | 73% | |==================================================== | 74% | |==================================================== | 75% | |===================================================== | 76% | |====================================================== | 77% | |======================================================= | 78% | |======================================================= | 79% | |======================================================== | 80% | |========================================================= | 81% | |========================================================= | 82% | |========================================================== | 83% | |=========================================================== | 84% | |============================================================ | 85% | |============================================================ | 86% | |============================================================= | 87% | |============================================================== | 88% | |============================================================== | 89% | |=============================================================== | 90% | |================================================================ | 91% | |================================================================ | 92% | |================================================================= | 93% | |================================================================== | 94% | |================================================================== | 95% | |=================================================================== | 96% | |==================================================================== | 97% | |===================================================================== | 98% | |===================================================================== | 99% | |======================================================================| 100%
Use wt.image()
to plot the spectrum
Involves integral calculus
\[ f(t) = \frac{1}{C_{\psi}} \int_a \int_b < f(t), \psi_{a,b}(t) > \psi_{a,b}(t) db \frac{da}{a^2} \]
Use reconstruct()
to get estimate of original time series