
Fitting Bayesian time series models
FISH 507 – Applied Time Series Analysis

Eric Ward

09 Feb 2021

Overview of today’s material

I Quick overview of Stan
I Manipulating and plotting Stan output
I Examples of time series models

Review of models we’ve used so far

Models
I Regression
I ARMA models
I State Space Models
I Dynamic Factor Analysis
I Dynamic Linear Models
I MARSS models (multivariate time series models)

Why Bayesian?

I Complex hierarchical models
I Non-linear models
I Hierarchical or shared parameters
I Non-normal data
I Prior information

I Inference: what’s the probability that the data are less than
some threshold?

I No bootstrapping!
I We get credible intervals for parameters and states

simultaneously

Using STAN

What is Stan?
I Powerful, cross-platform and cross-language (R, Julia, Matlab,

etc) that allows users to write custom code that can be called
directly from R

I Estimation can be fully or approximate Bayesian inference, or
maximum a posterior optimization (BFGS)

I Useful links:
I Stan homepage
I Stan manual
I rstan

https://mc-stan.org/
https://mc-stan.org/users/documentation/
https://cran.r-project.org/web/packages/rstan/index.html

Options for using Stan in this class

I Write your own code (based on examples in the manual, etc)

I Use an existing package

I Use our bundled code to get started with simple models (we’ll
start here)

Existing packages: rstanarm and bmrs

I Both packages very flexible, and allow same syntax as basic
lm/glm or lmer models, e.g.

rstan::stan_lm
rstan::stan_glm
rstan::stan_glmer

I Vignettes brms rstanarm

http://paul-buerkner.github.io/brms/
http://mc-stan.org/rstanarm/articles/rstanarm.html

Potential limitations

brms includes autocorrelated errors, non-normal data, non-linear
smooths (GAMs), etc.

I But doesn’t allow for AR processes on parameters / latent
variables

I Also doesn’t include multivariate data

Advantages

brms offers notation that should be very familiar to run many
classes of models,
brms::brm(y ~ x * z + (1|group), data=d)
brms::brm(y01 ~ x * z + (1|group), data=d, family = binomial("logit"))
brms::brm(bf(y ~ s(x)), data=d)

I smooths can also be of 2-d models (e.g. spatial models)

To install code for this class

I We’ll need to install these packages to run Stan,
install.packages("rstan", repos = "https://cloud.r-project.org")
install.packages("devtools", repos = "https://cloud.r-project.org")

I And then we can install our custom package for the class with
bundled Stan time series models

devtools::install_github(repo="nwfsc-timeseries/atsar")
library("atsar")

Working with Stan output
I We’ll start with a simple example, using a classic dataset of

flow on the Nile River

Year

F
lo

w
 v

ol
um

e

1880 1900 1920 1940 1960

60
0

80
0

10
00

12
00

14
00

Working with Stan output

Fitting a regression model to this data doesn’t make a lot of sense,
but it will introduce us to the basic functionality of our wrapper
functions in the atsar package. We’ll start with a function named
fit_stan

lm_intercept = fit_stan(y = as.numeric(Nile),
x = rep(1, length(Nile)),
model_name = "regression")

Working with Stan output

The output of the fitted model can be examined a number of ways.
Starting with the simple summaries,
lm_intercept

This model ran 3 MCMC chains (the default) with warmups of 500,
followed by 500 more iterations. These latter were stored (so 3x500
= 1500 parameter samples total)

Working with Stan output

But we’re probably more interested in the values for individual
parameters. We can pull these out in a few different ways, and plot
them with either base graphics or ggplot. As a first option for
getting values we can manipulate, we can use the extract function,
pars = rstan::extract(lm_intercept)

Plotting with Stan output
Then we can do all kinds of things with this output, like making a
histogram
hist(pars$beta, 40, col="grey", xlab="Intercept", main="")

Intercept

F
re

qu
en

cy

−5 0 5

0
50

15
0

or calculate summary statistics
quantile(pars$beta, c(0.025,0.5,0.975))

Plotting with Stan output
The object lm_intercept is a stanfit object, which means
there’s a lot of other plotting functionality from the rstan package
we can use

I First, let’s make some traceplots
rstan::traceplot(lm_intercept,

pars = c("beta[1]","sigma"), nrow=2, ncol=1)

sigma

beta[1]

500 600 700 800 900 1000

500 600 700 800 900 1000

−4

0

4

8

800
900

1000
1100
1200
1300

chain

1

2

3

Plotting with Stan output
I Second, we can examine the correlation between parameters

with a pairs plot,
rstan::stan_scat(lm_intercept, pars = c("beta[1]","sigma"))

800

900

1000

1100

1200

1300

−4 0 4 8

beta[1]

si
gm

a

Plotting with Stan output
I Third, maybe we want to make some density plots or

histograms
rstan::stan_dens(lm_intercept, pars = c("beta[1]","sigma"))

beta[1] sigma

−4 0 4 8 800 900 1000 1100 1200 1300

rstan::stan_hist(lm_intercept, pars = c("beta[1]","sigma"))

beta[1] sigma

−5 0 5 800 900 1000 1100 1200 1300

Plotting with Stan output
I Fourth, we can look at implementing some of the plots

included in bayesplot
library(bayesplot)
mcmc_areas(as.matrix(lm_intercept),

pars = c("beta[1]","sigma"),
prob = 0.8)

sigma

beta[1]

0 500 1000

http://mc-stan.org/bayesplot/

Plotting with Stan output
I Another way to show the same uncertainties is with dotplots

and credible intervals,
rstan::stan_plot(lm_intercept, pars=c("beta[1]","sigma"))

beta[1]

sigma

0 300 600 900

Plotting with Stan output
I We can also look at the autocorrelation of each parameter,

which is another useful diagnostic for convergence (we want
very low levels of autocorrelation)

rstan::stan_ac(lm_intercept, pars=c("beta[1]","sigma"))

beta[1] sigma

0 10 20 0 10 20

0.00

0.25

0.50

0.75

1.00

Lag

A
vg

.
au

to
co

rr
el

at
io

n

Plotting with Stan output

These plots only the tip of the iceberg for plotting. For more great
examples of the kinds of plots avaialable, see these vignettes:

I Examples on Stan

I Jonah Gabry’s introduction to bayesplot

I Matthew Kay’s introduction to bayesplot and tidybayes

https://mc-stan.org/users/interfaces/bayesplot
https://cran.r-project.org/web/packages/bayesplot/vignettes/plotting-mcmc-draws.html
https://cran.r-project.org/web/packages/tidybayes/vignettes/tidybayes.html

Tidy summaries from Stan output

Using the broom.mixed package, we can also extract some tidy
summaries of the output
coef = broom.mixed::tidy(lm_intercept)
head(coef)

A tibble: 6 x 3
term estimate std.error
<chr> <dbl> <dbl>
1 beta[1] 0.511 2.09
2 sigma 932. 70.4
3 pred[1] 0.511 2.09
4 pred[2] 0.511 2.09
5 pred[3] 0.511 2.09
6 pred[4] 0.511 2.09

Tidy summaries from Stan output
These tidy summaries can then be fed into ggplot for example
coef = broom.mixed::tidy(lm_intercept)
ggplot(coef[grep("pred",coef$term),], aes(x = 1:100,y=estimate)) +

geom_point() + ylab("Estimate +/- SE")+ xlab("")+
geom_errorbar(aes(ymin=estimate-std.error, ymax=estimate+std.error)) +
theme_bw()

−1

0

1

2

0 25 50 75 100

E
st

im
at

e
+

/−
 S

E

Preserving chain order

For models with multiple chains, we might want to preserve the
chain ID to look at individual chain diagnostics. Remember that

I Each chain is independent
I extract defaults to merging samples from all chains together,

e.g.
extract(object, pars, permuted = TRUE)

I But summaries can be generated for each combination of
parameters-chains by setting

extract(object, pars, permuted = FALSE)

More time series models: application to NEON EFI
Aquatics challenge

Temperature and oxygen data available from Barco Lake in Florida
(note: to do this for real, account for the observations not always
being 1 day apart)

0.0

2.5

5.0

7.5

10.0

2018 2019 2020 2021
Time

O
xy

ge
n

More time series models: random walk

This model should be familiar,

E [Yt] = E [Yt−1] + et−1

I We’ll fit model to oxygen data from Lake Barco
I Note that the use of the argument model_name and

est_drift. By not estimating drift, we asssume the process is
stationary with respect to the mean

rw = fit_stan(y = neon$oxygen[-(1:799)],
est_drift = FALSE, model_name = "rw")

More time series models: random walk

Did the model converge?

I One quick check is to look at the value of R-hat for each
parameter (generally should be small, < 1.05 or smaller)

rw_summary <- summary(rw, pars = c("sigma"),
probs = c(0.1, 0.9))$summary

print(rw_summary)

mean se_mean sd 10% 90% n_eff Rhat
sigma 0.147091 0.0005546384 0.01007956 0.1342019 0.1605522 330.2654 1.006945

More time series models: univariate state space models

State equation:
xt = φx t−1 + εt−1

where εt−1 ∼ Normal(0, q)

Observation equation:

Yt ∼ Normal(xt , r)

I Let’s compare models with and without the AR parameter φ in
the process model

More time series models: univariate state space models

We can first run the model with φ,
ss_ar = fit_stan(y = neon$oxygen[-(1:799)],

est_drift=FALSE,
model_name = "ss_ar")

then without,
ss_rw = fit_stan(y = neon$oxygen[-(1:799)],

est_drift=FALSE,
model_name = "ss_rw")

More time series models: DLMs

For comparison to MARSS, we’ll use Mark’s example of
logit-transformed survival from the Columbia River. We can think
about setting the DLM up in the slope or the intercept. For this
first example, we’ll do the latter.

−6

−5

−4

−3

1970 1980 1990 2000
year

lo
gi

t.s

mod = fit_stan(y = SalmonSurvCUI$logit.s,
model_name="dlm-intercept")

Fitting a DLM with time varying intercept
df = data.frame("year"=1:42,
"pred"=apply(extract(mod, "intercept", permuted=FALSE), 3, mean),
"low"=apply(extract(mod, "intercept", permuted=FALSE), 3, quantile,0.025),
"hi"=apply(extract(mod, "intercept", permuted=FALSE), 3, quantile,0.975))
ggplot(df, aes(year,pred)) +

geom_ribbon(aes(ymin=low,ymax=hi),fill="grey30",alpha=0.5) +
geom_line() + ylab("Intercept") + xlab("Time") +
theme_bw()

−6

−5

−4

−3

0 10 20 30 40
Time

In
te

rc
ep

t

Fitting a DLM with single intercept and time-varying slope

mod = fit_stan(y = SalmonSurvCUI$logit.s,
x = SalmonSurvCUI$CUI.apr, model_name="dlm-slope")

Fitting a DLM time-varying intercept and time-varying
slope

I Use model.matrix() to specify x
lmmod = lm(SalmonSurvCUI$logit.s ~ SalmonSurvCUI$CUI.apr)
x = model.matrix(lmmod)

lmmod = lm(SalmonSurvCUI$logit.s ~ SalmonSurvCUI$CUI.apr)
mod = fit_stan(y = SalmonSurvCUI$logit.s,

x = model.matrix(lmmod),
model_name="dlm")

More time series models: univariate state space models
Estimates from the AR(1) state space model

−6

−5

−4

−3

0 10 20 30 40
Time

E
st

im
at

e
(A

R
)

More time series models: univariate state space models
Estimates from the RW state space model

−6

−5

−4

−3

0 10 20 30 40
Time

E
st

im
at

e
(A

R
)

More time series models: univariate state space models
Estimates from both models (note the difference in credible interval
widths)

−6

−5

−4

−3

0 10 20 30 40
Time

E
st

im
at

e

model

AR

RW

alpha

0.3

More time series models: univariate state space models
We might be also interested in looking at posterior estimates for
these models.

I What is the posterior distribution of φ?
rstan::stan_dens(ss_ar, c("phi"))

0.925 0.950 0.975 1.000

phi

I This shows with a value near 1, the behavior of the model
should be very similar to the random walk (from the
predictions, it is!). The multi-modal distribution probably is an
indicator of convergence issues

More time series models: univariate state space models

We might also be interested in derived quantities.

I For example, what’s the probability of temperature exceeding
90 degrees?

pars = extract(ss_ar)
p = length(which(pars$pred > 90)) / length(pars$pred)
print(round(p,3))

[1] 0

Dynamic Factor Analysis (DFA)

As an example of Bayesian DFA, we’ll load the WA plankton
dataset. There’s 3 versions of the data, and we’ll use the one that’s
been transformed. As a reminder,

+ 0s replaced with NAs
+ data have been z-scored
+ we only use data from 1980-1989 for simplicity

dat = lakeWAplanktonTrans
plankdat = dat[dat[,"Year"]>=1980 & dat[,"Year"]<1990,]
phytoplankton = c("Cryptomonas", "Diatoms", "Greens",

"Unicells", "Other.algae")
dat.spp.1980 = plankdat[,phytoplankton]

Dynamic Factor Analysis (DFA)

Unicells Other.algae

Cryptomonas Diatoms Greens

0 25 50 75 100 125 0 25 50 75 100 125

0 25 50 75 100 125

−4

−2

0

2

−4

−2

0

2

Time

Ln
 (

ab
un

da
nc

e)

Running the model

I The ‘atsar’ package includes a simple version of DFA
I We’ve bundled these into a more flexible DFA package with

more features,

Additional features included
I Replicate observations

−2

−1

0

1

2

0 10 20 30 40
Time

O
bs

er
va

tio
n Pop

1

2

3

Additional features included
I Extreme deviations (modeled with Student-t instead of normal

errors)

−1

0

1

2

0 10 20 30 40
Time

O
bs

er
va

tio
n

Pop

1

2

Additional features included

I Replicate observations
I Extreme deviations (modeled with Student-t instead of normal

errors)
I Alternative constraints on loadings (e.g. compositions)
I Process variances estimable (sometimes!)

Running the model

For starters, we’ll try a 3-trend model,
mod_3 = bayesdfa::fit_dfa(y = t(dat.spp.1980), num_trends=3)

Trends need to be rotated (like MARSS)

Why? Identifiability

I Try re-ordering time series, and running DFA on each new
dataset

I Results will be sensitive to time series order, BUT not after
rotation

I Like MARSS we’ll use varimax rotation

Use function we’ve written, rotate_trends

Attributes of rotated object

Z_rot, rotated Z matrix for each MCMC draw
trends, rotated trends for each MCMC draw
Z_rot_mean, mean Z across draws
trends_mean, mean trends across draws
trends_lower, lower 2.5% on trends
trends_upper, upper 97.5% on trends

Other variance structures

By default, the structure is diagonal and equal

Diagonal and unequal or shared variances can also be specified using
varIndx argument. The diagonal and unequal structure would be
called with
mod_3 = bayesdfa::fit_dfa(y = t(dat.spp.1980),

num_trends=3,
varIndx = rep(1,5))

Uncertainty intervals on states

We often just present the trend estimates for DFA – but not
uncertainty

Let’s look at effect of missing data on DFA for the harbor seal
dataset
data("harborSealWA")

Model
Assume single trend for the population

5 10 15 20

6.
0

6.
5

7.
0

7.
5

8.
0

8.
5

Ln
 (

ab
un

da
nc

e)

Extracting the predicted trend
We’ll extract predictions from the best model,
fit = bayesdfa::fit_dfa(y = t(harborSealWA[,-1]), num_trends = 1)
pars = extract(fit$model)
df = data.frame("time"=1:nrow(harborSealWA),

"pred"=apply(pars$x[,1,], 2, mean),
"low"=apply(pars$x[,1,], 2, quantile,0.025),
"hi"=apply(pars$x[,1,], 2, quantile,0.975))

ggplot(df, aes(time, pred)) +
geom_ribbon(aes(ymin=low,ymax=hi), fill="grey30", alpha=0.5)+
geom_line() +
theme_bw()

−5

0

0 5 10 15 20
time

pr
ed

Summary

I Bayesian implementation of time series models in Stan can do
everything that MARSS can do and more!

I Very flexible language, great developer community

I Widely used by students in SAFS / UW / QERM / etc

I Please come to us with questions, modeling issues, or add to
code in our packages to make them better!

