Dynamic Factor Analysis

FISH 507 – Applied Time Series Analysis

Mark Scheuerell 28 January 2021

Topics for today

Deterministic vs stochastic elements Regression with autocorrelated errors Regression with temporal random effects Dynamic Factor Analysis (DFA)

- Forms of covariance matrix
- Constraints for model fitting
- Interpretation of results

Consider this simple model, consisting of a mean μ plus error

$$y_i = \mu + e_i$$
 with $e_i \sim N(0, \sigma^2)$

The right-hand side of the equation is composed of *deterministic* and *stochastic* pieces

 $y_i = \underbrace{\mu}_{\text{deterministic}} + \underbrace{e_i}_{\text{stochastic}}$

Sometime these pieces are referred to as *fixed* and *random*

$$y_i = \underbrace{\mu}_{\text{fixed}} + \underbrace{e_i}_{\text{random}}$$

This can also be seen by rewriting the model

$$y_i = \mu + e_i$$
 with $e_i \sim N(0, \sigma^2)$

as

 $y_i \sim N(\mu, \sigma^2)$

Simple linear regression

We can expand the deterministic part of the model, as with linear regression

$$y_i = \underbrace{\alpha + \beta x_i}_{\text{mean}} + e_i \text{ with } e_i \sim N(0, \sigma^2)$$

IIICall

SO

$$y_i \sim N(\alpha + \beta x_i, \sigma^2)$$

A simple time series model

Consider a simple model with a mean μ plus white noise

$$y_t = \mu + e_t$$
 with $e_t \sim N(0, \sigma^2)$

Time series model with covariates

We can expand the deterministic part of the model, as before with linear regression

$$y_t = \underbrace{\alpha + \beta x_t}_{\text{mean}} + e_t \text{ with } e_t \sim N(0, \sigma^2)$$

SO

$$y_t \sim N(\alpha + \beta x_t, \sigma^2)$$

Example of linear model

Time

Model residuals

These do not look like white noise!

ACF of model residuals

There is significant autocorrelation at lag = 1

Model with autocorrelated errors

We can expand the stochastic part of the model to have autocorrelated errors

$$y_t = \alpha + \beta x_t + e_t$$
$$e_t = \phi e_{t-1} + w_t$$

with $w_t \sim N(0, \sigma^2)$

Model with autocorrelated errors

We can expand the stochastic part of the model to have autocorrelated errors

$$y_t = \alpha + \beta x_t + e_t$$
$$e_t = \phi e_{t-1} + w_t$$

with $w_t \sim N(0, \sigma^2)$

We can write this model as our standard state-space model

Observation equation

$$y_t = \alpha + \beta x_t + e_t$$

= $e_t + \alpha + \beta x_t$
 \Downarrow
 $y_t = x_t + a + Dd_t + v_t$

with

$$x_t = e_t, a = \alpha, D = \beta, d_t = x_t, v_t = 0$$

State equation

$$e_t = \phi e_{t-1} + w_t$$
$$\Downarrow$$
$$x_t = Bx_t + w_t$$

with

$$x_t = e_t$$
 and $B = \phi$

Full form

$$y_t = \alpha + \beta x_t + e_t$$
$$e_t = \phi e_{t-1} + w_t$$
$$\Downarrow$$
$$y_t = a + Dd_t + x_t$$
$$x_t = Bx_t + w_t$$

Observation model in MARSS()

$$y_t = a + Dd_t + x_t$$
$$\Downarrow$$
$$y_t = Zx_t + a + Dd_t + v_t$$

y = data	<i>##</i> [1 x T] matrix of data
a = matrix("a")	## intercept
D = matrix("D")	## slope
d = covariate	<i>##</i> [1 x T] matrix of measured covariate
Z = matrix(1)	<i>## no multiplier on x</i>
R = matrix(0)	$## v_t \sim N(0,R);$ want $v_t = 0$ for all t

State model in MARSS()

$$x_t = Bx_t + w_t$$
$$\Downarrow$$
$$x_t = Bx_t + u + Cc_t + w_t$$

В	<pre>= matrix("b")</pre>	## AR(1)	coefficient	for model e	errors
Q	<pre>= matrix("q")</pre>	## w_t ~	N(0,Q); var	for model e	errors
u	= matrix(0)	<i>## u = 0</i>			
С	= matrix(0)	$\#\!\!\# C = 0$			
С	= matrix(0)	## c_t =	0 for all t		

MORE RANDOM EFFECTS

Expanding the random effect

Recall our simple model

$$y_t = \underbrace{\mu}_{\text{fixed}} + \underbrace{e_t}_{\text{random}}$$

Expanding the random effect

We can expand the random portion

Expanding the random effect

We can expand the random portion

This is simply a random walk observed with error

Random walk observed with error

$$y_t = \mu + f_t + e_t \text{ with } e_t \sim N(0, \sigma)$$

$$f_t = f_{t-1} + w_t \text{ with } w_t \sim N(0, \gamma)$$

$$\Downarrow$$

$$y_t = a + x_t + v_t \text{ with } v_t \sim N(0, R)$$

$$x_t = x_{t-1} + w_t \text{ with } w_t \sim N(0, Q)$$

Expanding fixed & random effects

We can expand the fixed portion

Fixed & random effects

In familiar state-space form

$$y_t = \alpha + \beta x_t + f_t + e_t \text{ with } e_t \sim N(0, \sigma)$$

$$f_t = f_{t-1} + w_t \text{ with } w_t \sim N(0, \gamma)$$

$$\Downarrow$$

$$y_t = a + Dd_t + x_t + v_t \text{ with } v_t \sim N(0, R)$$

$$x_t = x_{t-1} + w_t \text{ with } w_t \sim N(0, Q)$$

MULTIPLE TIME SERIES

Simple model for 2+ time series

Random walk observed with error

$$y_{i,t} = x_{i,t} + a_i + v_{i,t}$$

 $x_{i,t} = x_{i,t-1} + w_{i,t}$

with

 $v_{i,t} \sim N(0, R)$ $w_{i,t} \sim N(0, Q)$

Random walk observed with error

$$y_{1,t} = x_{1,t} + a_1 + v_{1,t}$$

$$y_{2,t} = x_{2,t} + a_2 + v_{2,t}$$

$$\vdots$$

$$y_{n,t} = x_{n,t} + a_2 + v_{n,t}$$

$$x_{1,t} = x_{1,t-1} + w_{1,t}$$

$$x_{2,t} = x_{2,t-1} + w_{2,t}$$

$$\vdots$$

$$x_{n,t} = x_{n,t-1} + w_{n,t}$$

Random walk observed with error

In matrix form

$$\mathbf{y}_t = \mathbf{x}_t + \mathbf{a} + \mathbf{v}_t$$
$$\mathbf{x}_t = \mathbf{x}_{t-1} + \mathbf{w}_t$$

with

 $\mathbf{v}_t \sim \mathrm{MVN}(\mathbf{0}, \mathbf{R})$

 $\mathbf{w}_t \sim \mathrm{MVN}(\mathbf{0}, \mathbf{Q})$

h mm v ~ mm mm m MM mm m W m man m m M m m m Mar mar mar man home

Environmental time series

We often observe covariance among environmental time series, especially for those collected close to one another in space

᠕᠕ 'MM m my m M

Are there some common patterns here?

Common patterns in time series

Ex: population structure

$$\mathbf{y}_t = \mathbf{Z}\mathbf{x}_t + \mathbf{a} + \mathbf{v}_t$$
$$\mathbf{x}_t = \mathbf{x}_{t-1} + \mathbf{w}_t$$

We can make (test) assumptions by specifying different forms for ${f Z}$

Ex: Harbor seal population structure

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix}_t = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} x_{JF} \\ x_N \\ x_S \end{bmatrix}_t + \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \end{bmatrix}_t$$
$$\begin{bmatrix} x_{JF} \\ x_N \\ x_S \end{bmatrix}_t = \begin{bmatrix} x_{JF} \\ x_N \\ x_S \end{bmatrix}_{t-1} + \begin{bmatrix} w_{JF} \\ w_N \\ w_S \end{bmatrix}_t$$
Finding common patterns

What if our observations were instead a mixture of 2+ states?

For example, we sampled haul-outs located between several breeding sites

Mixtures of states

 $\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix}_t = \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0.2 & 0.7 & 0.1 \\ 0 & 0.9 & 0.1 \\ 0 & 0.3 & 0.7 \\ 0 & 0.1 & 0.9 \end{bmatrix} \times \begin{bmatrix} x_{JF} \\ x_N \\ x_S \end{bmatrix}_t + \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \end{bmatrix}_t$

$$\begin{bmatrix} x_{JF} \\ x_{N} \\ x_{S} \end{bmatrix}_{t} = \begin{bmatrix} x_{JF} \\ x_{N} \\ x_{S} \end{bmatrix}_{t-1} + \begin{bmatrix} w_{JF} \\ w_{N} \\ w_{S} \end{bmatrix}_{t}$$

Finding common patterns

What if our observations were a mixture of states, but we didn't know how many or the weightings?

$$\mathbf{y}_t = \mathbf{Z}\mathbf{x}_t + \mathbf{a} + \mathbf{v}_t$$
$$\mathbf{x}_t = \mathbf{x}_{t-1} + \mathbf{w}_t$$

What are the dimensions of \mathbb{Z} ?

What are the elements within ${f Z}$?

DFA is a *dimension reduction* technique, which models n observed time series as a function of m hidden states (patterns), where $n \gg m$

State-space form

$$\mathbf{y}_t = \mathbf{Z}\mathbf{x}_t + \mathbf{a} + \mathbf{v}_t$$
$$\mathbf{x}_t = \mathbf{x}_{t-1} + \mathbf{w}_t$$

data: \mathbf{y}_t is $n \times 1$

loadings: **Z** is $n \times m$ with n > m

states: \mathbf{x}_t is $m \times 1$

Dimension reduction

Principal Components Analysis (PCA)

Goal is to reduce some large number of correlated variates into a few uncorrelated factors

Calculating the principal components requires us to estimate the covariance of the data

PC = eigenvectors(cov(y))

There will be *n* principal components (eigenvectors) for an $n \times T$ matrix **y**

We reduce the dimension by selecting a subset of the components that explain much of the variance (eg, the first 2)

Relationship between PCA & DFA

We need to estimate the covariance in the data \boldsymbol{y}

$$\mathbf{y}_t = \mathbf{Z}\mathbf{x}_t + \mathbf{a} + \mathbf{v}_t$$
, with $\mathbf{v}_t \sim \text{MVN}(\mathbf{0}, \mathbf{R})$

SO

$$\operatorname{cov}(\mathbf{y}_t) = \mathbf{Z}\operatorname{cov}(\mathbf{x}_t)\mathbf{Z}^\top + \mathbf{R}$$

In PCA, we require ${f R}$ to be diagonal, but not so in DFA

Forms for **R** with n = 4

$$\mathbf{R} \stackrel{?}{=} \begin{bmatrix} \sigma & 0 & 0 & 0 \\ 0 & \sigma & 0 & 0 \\ 0 & 0 & \sigma & 0 \\ 0 & 0 & 0 & \sigma \end{bmatrix} \text{ or } \mathbf{R} \stackrel{?}{=} \begin{bmatrix} \sigma_1 & 0 & 0 & 0 \\ 0 & \sigma_2 & 0 & 0 \\ 0 & 0 & \sigma_3 & 0 \\ 0 & 0 & 0 & \sigma_4 \end{bmatrix}$$

Forms for **R** with n = 4

$$\mathbf{R} \stackrel{?}{=} \begin{bmatrix} \sigma & 0 & 0 & 0 \\ 0 & \sigma & 0 & 0 \\ 0 & 0 & \sigma & 0 \\ 0 & 0 & 0 & \sigma \end{bmatrix} \text{ or } \mathbf{R} \stackrel{?}{=} \begin{bmatrix} \sigma_{1} & 0 & 0 & 0 \\ 0 & \sigma_{2} & 0 & 0 \\ 0 & 0 & \sigma_{3} & 0 \\ 0 & 0 & 0 & \sigma_{4} \end{bmatrix}$$
$$\mathbf{R} \stackrel{?}{=} \begin{bmatrix} \sigma & \gamma & \gamma & \gamma \\ \gamma & \sigma & \gamma & \gamma \\ \gamma & \gamma & \sigma & \gamma \\ \gamma & \gamma & \sigma & \gamma \\ \gamma & \gamma & \gamma & \sigma \end{bmatrix} \text{ or } \mathbf{R} \stackrel{?}{=} \begin{bmatrix} \sigma_{1} & 0 & 0 & 0 \\ 0 & \sigma_{2} & 0 & \gamma_{2,4} \\ 0 & 0 & \sigma_{3} & 0 \\ 0 & \gamma_{2,4} & 0 & \sigma_{4} \end{bmatrix}$$

$$\mathbf{y}_t = \mathbf{Z}\mathbf{x}_t + \mathbf{a} + \mathbf{v}_t$$
$$\mathbf{x}_t = \mathbf{x}_{t-1} + \mathbf{w}_t$$

What form should we use for \mathbb{Z} ?

$$\mathbf{Z} \stackrel{?}{=} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \\ z_5 \end{bmatrix} \text{ or } \mathbf{Z} \stackrel{?}{=} \begin{bmatrix} z_{1,1} & z_{2,1} \\ z_{1,2} & z_{2,2} \\ z_{1,3} & z_{2,3} \\ z_{1,4} & z_{2,4} \\ z_{1,5} & z_{2,5} \end{bmatrix} \text{ or } \mathbf{Z} \stackrel{?}{=} \begin{bmatrix} z_{1,1} & z_{2,1} & z_{3,1} \\ z_{1,2} & z_{2,2} & z_{3,2} \\ z_{1,3} & z_{2,3} & z_{3,3} \\ z_{1,4} & z_{2,4} & z_{3,4} \\ z_{1,5} & z_{2,5} \end{bmatrix}$$

$$\mathbf{y}_t = \mathbf{Z}\mathbf{x}_t + \mathbf{a} + \mathbf{v}_t$$
$$\mathbf{x}_t = \mathbf{x}_{t-1} + \mathbf{w}_t$$

What form should we use for \mathbb{Z} ?

$$\mathbf{Z} \stackrel{?}{=} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \\ \vdots \\ z_5 \end{bmatrix} \text{ or } \mathbf{Z} \stackrel{?}{=} \begin{bmatrix} z_{1,1} & z_{2,1} \\ z_{1,2} & z_{2,2} \\ z_{1,3} & z_{2,3} \\ \vdots & \vdots \\ z_{1,n} & z_{2,n} \end{bmatrix} \text{ or } \mathbf{Z} \stackrel{?}{=} \begin{bmatrix} z_{1,1} & z_{2,1} & z_{3,1} \\ z_{1,2} & z_{2,2} & z_{3,2} \\ z_{1,3} & z_{2,3} & z_{3,3} \\ \vdots & \vdots \\ z_{1,n} & z_{2,n} \end{bmatrix}$$

We'll use model selection criteria to choose (eg, AICc)

Fitting DFA models

Unless ${f Z}$ is unconstrained in some manner, there are an infinite number of combinations of ${f Z}$ and ${f x}$ that will equal ${f y}$

Therefore we need to impose some constraints on the model

1) The offset **a**

$$\mathbf{y}_{t} = \mathbf{Z}\mathbf{x}_{t} + \mathbf{a} + \mathbf{v}_{t}$$
$$\mathbf{x}_{t} = \mathbf{x}_{t-1} + \mathbf{w}_{t}$$
$$\mathbf{a} = \begin{bmatrix} a_{1} \\ a_{2} \\ a_{3} \\ \vdots \\ a_{n} \end{bmatrix}$$

1) The offset **a**

$$\mathbf{y}_{t} = \mathbf{Z}\mathbf{x}_{t} + \mathbf{a} + \mathbf{v}_{t}$$
$$\mathbf{x}_{t} = \mathbf{x}_{t-1} + \mathbf{w}_{t}$$
$$\mathbf{a} = \begin{bmatrix} a_{1} \\ a_{2} \\ a_{3} \\ \vdots \\ a_{n} \end{bmatrix}$$

We will set the first m elements of ${f a}$ to 0

1) The offset **a**

For example, if n = 5 and m = 2

$$\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{bmatrix} \Rightarrow \mathbf{a} = \begin{bmatrix} 0 \\ 0 \\ a_3 \\ a_4 \\ a_5 \end{bmatrix}$$

1) The offset **a**

For example, if n = 5 and m = 2

$$\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{bmatrix} \Rightarrow \mathbf{a} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ a_3 \\ a_4 \\ a_5 \end{bmatrix} \Rightarrow \mathbf{a} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Note, however, that this causes problems for the EM algorithm so we will often de-mean the data and set $a_i = 0$ for all i

2) The loadings ${f Z}$

$$\mathbf{y}_{t} = \mathbf{Z}\mathbf{x}_{t} + \mathbf{a} + \mathbf{v}_{t}$$
$$\mathbf{x}_{t} = \mathbf{x}_{t-1} + \mathbf{w}_{t}$$
$$\begin{bmatrix} z_{1,1} & z_{2,1} & \cdots & z_{m,1} \\ z_{1,2} & z_{2,2} & \cdots & z_{m,2} \\ z_{1,3} & z_{2,3} & \cdots & z_{m,3} \\ \vdots & \vdots & \ddots & z_{m,4} \\ z_{1,n} & z_{2,n} & \cdots & z_{m,n} \end{bmatrix}$$

2) The loadings ${f Z}$

$$\mathbf{y}_{t} = \mathbf{Z}\mathbf{x}_{t} + \mathbf{a} + \mathbf{v}_{t}$$
$$\mathbf{x}_{t} = \mathbf{x}_{t-1} + \mathbf{w}_{t}$$
$$\begin{bmatrix} z_{1,1} & z_{2,1} & \cdots & z_{m,1} \\ z_{1,2} & z_{2,2} & \cdots & z_{m,2} \\ z_{1,3} & z_{2,3} & \cdots & z_{m,3} \\ \vdots & \vdots & \ddots & z_{m,4} \\ z_{1,n} & z_{2,n} & \cdots & z_{m,n} \end{bmatrix}$$

We will set the upper right triangle of ${f Z}$ to 0

2) The loadings ${f Z}$

For example, if n = 5 and m = 3

	$z_{1,1}$	0	0
	$z_{1,2}$	Z2,2	0
Z =	Z1,3	Z2,3	Z3,3
	$z_{1,4}$	Z2,3	Z3,4
	$_{21,5}$	Z2,5	Z3,5 _

For the first m - 1 rows of \mathbb{Z} , $z_{i,j} = 0$ if j > i

2) The loadings ${f Z}$

An additional constraint is necessary in a Bayesian context

$$\mathbf{Z} = \begin{bmatrix} z_{1,1} & 0 & 0 \\ z_{1,2} & \underline{z_{2,2}} & 0 \\ z_{1,3} & z_{2,3} & \underline{z_{3,3}} \\ z_{1,4} & z_{2,3} & z_{3,4} \\ z_{1,5} & z_{2,5} & z_{3,5} \end{bmatrix}$$

Diagonal of **Z** is positive: $z_{i,j} > 0$ if i = j

3) The state variance ${f Q}$

$$\mathbf{y}_t = \mathbf{Z}\mathbf{x}_t + \mathbf{a} + \mathbf{v}_t$$
$$\mathbf{x}_t = \mathbf{x}_{t-1} + \mathbf{w}_t$$
$$\mathbf{w}_t \sim \text{MVN}(\mathbf{0}, \mathbf{Q})$$

3) The state variance ${f Q}$

$$\mathbf{y}_t = \mathbf{Z}\mathbf{x}_t + \mathbf{a} + \mathbf{v}_t$$
$$\mathbf{x}_t = \mathbf{x}_{t-1} + \mathbf{w}_t$$
$$\mathbf{w}_t \sim \text{MVN}(\mathbf{0}, \mathbf{Q})$$

We will set ${f Q}$ equal to the Identity matrix ${f I}$

3) The state variance ${f Q}$

For example, if m = 4

$$\mathbf{Q} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

This allows our random walks to have a *lot* of flexibility

Including *p* covariates

$$\mathbf{y}_t = \mathbf{Z}\mathbf{x}_t + \mathbf{a} + \mathbf{D}\mathbf{d}_t + \mathbf{v}_t$$
$$\mathbf{x}_t = \mathbf{x}_{t-1} + \mathbf{w}_t$$

 \mathbf{d}_t is a $p \times 1$ vector of covariates at time t

D is an $n \times p$ matrix of covariate effects

Dynamic Factor Analysis (DFA) Form for **D**

$$\mathbf{y}_t = \mathbf{Z}\mathbf{x}_t + \mathbf{a} + \mathbf{\underline{D}}\mathbf{d}_t + \mathbf{v}_t$$
$$\mathbf{x}_t = \mathbf{x}_{t-1} + \mathbf{w}_t$$

Careful thought must be given *a priori* as to the form for ${f D}$

Should the effect(s) vary by site, species, etc?

Dynamic Factor Analysis (DFA) Form for **D**

For example, given 2 covariates, Temp and Salinity

A note on model selection

Earlier we saw that we could use model selection criteria to help us choose among the different forms for ${\bf Z}$

However, caution must be given when comparing models with and without covariates, and varying numbers of states

A note on model selection

Think about the DFA model form

$$\mathbf{y}_t = \mathbf{Z}\mathbf{x}_t + \mathbf{a} + \mathbf{D}\mathbf{d}_t + \mathbf{v}_t$$

- **x**_{*t*} are *undetermined* random walks
- **d**_{*t*} are *predetermined* covariates

An example with 3 times series

Model 1 has 2 trends and no covariates

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}_t = \begin{bmatrix} z_{1,1} & z_{2,1} \\ z_{1,2} & z_{2,2} \\ z_{1,3} & z_{2,3} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}_t + \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}_t$$

Model 2 has 1 trend and 1 covariate

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}_t = \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix} \begin{bmatrix} x \end{bmatrix}_t + \begin{bmatrix} D_1 \\ D_2 \\ D_3 \end{bmatrix} \begin{bmatrix} d \end{bmatrix}_t + \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}_t$$

An example with 3 times series

Model 1 has 2 trends and no covariates

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}_t = \begin{bmatrix} z_{1,1} & z_{2,1} \\ z_{1,2} & z_{2,2} \\ z_{1,3} & z_{2,3} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}_t + \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}_t$$

Model 2 has 1 trend and 1 covariate

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}_t = \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix} \begin{bmatrix} x \end{bmatrix}_t + \begin{bmatrix} D_1 \\ D_2 \\ D_3 \end{bmatrix} \begin{bmatrix} d \end{bmatrix}_t + \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}_t$$

Unless \mathbf{d} is *highly correlated* with \mathbf{y} , Model 1 will be favored

A note on model selection

For models with covariates

- fit the *most complex model you can envision* based on all of your possible covariates and random factors (states)
- keep the covariates fixed and choose the number of trends (states) using AICc
- · keep the covariates & states fixed and choose the form for ${\boldsymbol{R}}$
- · sort out the covariates while keeping the states & R fixed

Interpreting DFA results

Recall that we had to constrain the form of ${f Z}$ to fit the model

7 –	$z_{1,1}$	0	• • •	0
	$z_{1,2}$	Z2,2	•	0
	• •	•	•	0
	• •	•	0 0 0	$Z_{m,m}$
	• •	•	• •	•
	$_{21,n}$	$Z_{2,n}$	Z3,n	$Z_{m,n}$

So, the 1st common factor is determined by the 1st variate, the 2nd common factor by the first two variates, etc.
Interpreting DFA results

To help with this, we can use a *basis rotation* to maximize the loadings on a few factors

If **H** is an $m \times m$ non-singular matrix, these 2 DFA models are equivalent

$$\mathbf{y}_t = \mathbf{Z}\mathbf{x}_t + \mathbf{a} + \mathbf{D}\mathbf{d}_t + \mathbf{v}_t$$
$$\mathbf{x}_t = \mathbf{x}_{t-1} + \mathbf{w}_t$$

$$\mathbf{y}_t = \mathbf{Z}\mathbf{H}^{-1}\mathbf{x}_t + \mathbf{a} + \mathbf{D}\mathbf{d}_t + \mathbf{v}_t$$
$$\mathbf{H}\mathbf{x}_t = \mathbf{H}\mathbf{x}_{t-1} + \mathbf{H}\mathbf{w}_t$$

How should we choose **H**?

Basis rotation

Varimax

A varimax rotation will maximize the variance of the loadings in ${\bf Z}$ along a few of the factors

PCA of 5 wines with 8 attributes

Rotated loadings

Rotated loadings

Topics for today

Deterministic vs stochastic elements Regression with autocorrelated errors Regression with temporal random effects Dynamic Factor Analysis (DFA)

- Forms of covariance matrix
- Constraints for model fitting
- Interpretation of results