
Covariates in Time Series Models
FISH 507 – Applied Time Series Analysis

Eli Holmes 

26 Jan 2021



Topics for today

Covariates
Why include covariates?

Multivariate linear regression on time series data

Covariates in MARSS models

Seasonality in MARSS models

Missing covariates

·

·

·

·

·
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Why include covariates in a model?

You want to forecast something using covariates

We are often interested in knowing the cause of variation

Covariates can explain the process that generated the patterns

Covariates can help deal with problematic observation errors

You are using covariates to model a changing system

·

·

·

·

·
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Lake WA plankton and covariates
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Covariates in time series models

Multivariate linear regression for time series data

Linear regression with ARMA errors

ARMAX

·

·

·

MARSS models with covariates = ARX plus covariates

aka Vector Autoregressive Models with covariates and observation
error

-

-
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Multivariate linear regression for time series
data

Can you do a linear regression with time series data (response and
predictors)? Yes, but you need to be careful. Read Chapter 5 in Hyndman and
Athanasopoulos 2018

Diagnostics that need to be satisfied

Be careful regarding spurious correlation if both response and predictor
variables have trends

·

Residuals are temporally uncorrelated

Residuals are not correlated with the predictor variables

-

-

·
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https://otexts.com/fpp2/regression.html


Linear regression with autocorrelated errors

The xreg argument in Arima() and arima() allows you to fit linear
regressions with autocorrelated errors. Read Chapter 9 in Hyndman and
Athanasopoulos 2018 on Dynamic Regression.

A linear regression with autocorrelated errors is for example:

= α + D +yt dt νt

= + +νt θ1νt−1 θ2νt−2 et
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https://otexts.com/fpp2/dynamic.html


Fitting in R

Arima()

auto.arima()

fit <- Arima(y, xreg=d, order=c(1,1,0))

fit <- auto.arima(y, xreg=x)
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Example from Hyndman and Athanasopoulos
2018
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A simple regression has problems

y <- uschange[,"Consumption"]; d <- uschange[,"Income"] 
fit <- lm(y~d)
checkresiduals(fit)

## 
##  Breusch-Godfrey test for serial correlation of order up to 10 
## 
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Let auto.arima() find best ARMA model

fit <- auto.arima(y, xreg=d) # It finds a ARMA(1,0,2) is best. 
checkresiduals(fit)

11/48



ARMAX

where  can be moving average process. .

= b +xt xt−1 C +ct wt

wt = + θwt et et−1
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Covariates in univariate state-space models

Now we can model how covariates affect the hidden process.

= b + C +xt xt−1 ct wt

= + D +yt xt dt vt
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Covariates in univariate state-space models

Random walk with drift. How does covariate affect the drift term?

Example. You have tag data on movement of animals in the ocean. How does
water temperature affect the speed (jump length) of the movement.

= + u + +xt xt−1 Cct wt

= +yt xt vt
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Covariates in univariate state-space models

How does covariate affect observation error relative to our stochastic trend.

Example. You are tracking population size using stream surveys. Turbidity
affects your observation error.

= + u +xt xt−1 wt

= +yt xt D +dt vt
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Covariates in MARSS models

= B + u + C +xt xt−1 ct wt

= Z + a + D +y
t

xt dt vt
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Covariates in state process

 The covariate is in  and the effect is in matrix .

Example. lat/lon movement data so  and  are 2 dimensional (our lat and
lon values).

= + u + +xt xt−1 Cct wt

= +y
t

xt vt

Cct ct C

x y
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Covariates in the state process

The model for  in site 1 (or species 1) is:

There is an effect of the prior  and an effect of temp and wind.

= + [ ] +[ ]
x1

x2 t
[ ]

x1

x2 t−1

Ca

Ca

Cb

Cb
[ ]

Temp

TP t
[ ]

w1

w2 t

xt

= + × Tem + × T +x1,t x1,t−1 Ca pt Cb Pt w1,t

xt
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The structure of 

The structure of  can model different effect structures

Effect of temp and TP is the same

C

C

[ ]
C

C

C

C [ ]
Temp

TP
t
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Effect of temperature and TP is different but the same across sites,
species, whatever the row in  isx

[ ]
Ca

Ca

Cb

Cb
[ ]

Temp

TP
t
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Effect of temperature and TP is different across sites or whatever the row
in  isx

[ ]
Ca1

Ca2

Cb1

Cb2
[ ]

Temp

TP
t
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Effect of temperature is the same across sites but TP is not

[ ]
Ca

Ca

Cb1

Cb2
[ ]

Temp

TP
t
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Covariate in the observation process

eg, vegetation obscures individuals, temperature affects behavior making
animals more or less visible

= +y
t

Z + axt D +dt wt
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Covariates in the observation process

In this case the covariate does not affect the state . It only affects the
observation of the state.

The model for  in site 1 is:

= + +
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The structure of 

The structure of  can model many different structures of the effects.

Effect of temp and wind is the same across sites 1 & 2 but different for site
3. In site 3, temp has an effect but wind does not
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Why include covariates in a MARSS model?

We want to understand how covariates drive the hidden process.

We want to test hypotheses for what caused a perturbation or change in
the dynamics.

We want to forecast using covariates.

We want to model the autocorrelation in the process errors using the known
driver.

·

·

·

·
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Why include covariates in a model?

Auto-correlated observation errors

Correlated observation errors across sites or species (y rows)

“hard numerically” = you need a lot of data

Model your  as a AR-1 process. hard numerically with a large multivariate
state-space model

If know what is causing the auto-correlation, include that as a covariate.
Easier.

· vt

·

Use a  matrix with off-diagonal terms. really hard numerically

If you know or suspect what is causing the correlation, include that as a
covariate. Easier.

· R

·
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Let’s work through an example

lec_07_covariates.R

Follows Chapter 8: https://nwfsc-timeseries.github.io/atsa-labs
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https://nwfsc-timeseries.github.io/atsa-labs


Seasonality
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Seasonality

Different approaches to modeling seasonality·

Factors

Polynomials

Sines and cosines (Fourier series)

-

-

-
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Monthly factors

Introduce 12 covariates: January, February, etc. If  is in January the January
covariate is 1 otherwise it is 0.

where  is month at time .

t

= + u + C +xt xt−1 ct wt

C =ct αm

m t
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Monthly factors

WA

OR

month effects

a 2 by 12 matrix
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TT <- nrow(chinook.month)/2 
covariate <- matrix(0, 12, TT) 
monrow <- match(chinook.month$Month, month.abb)[1:TT] 
covariate[cbind(monrow,1:TT)] <- 1 
covariate[,1:12]

##       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] 
##  [1,]    1    0    0    0    0    0    0    0    0     0     0     0 
##  [2,]    0    1    0    0    0    0    0    0    0     0     0     0 
##  [3,]    0    0    1    0    0    0    0    0    0     0     0     0 
##  [4,]    0    0    0    1    0    0    0    0    0     0     0     0 
##  [5,]    0    0    0    0    1    0    0    0    0     0     0     0 
##  [6,]    0    0    0    0    0    1    0    0    0     0     0     0 
##  [7,]    0    0    0    0    0    0    1    0    0     0     0     0 
##  [8,]    0    0    0    0    0    0    0    1    0     0     0     0 
##  [9,]    0    0    0    0    0    0    0    0    1     0     0     0 
## [10,]    0    0    0    0    0    0    0    0    0     1     0     0 
## [11,]    0    0    0    0    0    0    0    0    0     0     1     0 
## [12,]    0    0    0    0    0    0    0    0    0     0     0     1
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WA and OR have different month effects.

WA and OR have same month effects.

C <- matrix(paste0(month.abb,rep(1:2,each=12)), 2, 12, byrow = TRUE) 
C

##      [,1]   [,2]   [,3]   [,4]   [,5]   [,6]   [,7]   [,8]   [,9]   [,10]  
## [1,] "Jan1" "Feb1" "Mar1" "Apr1" "May1" "Jun1" "Jul1" "Aug1" "Sep1" "Oct1" 
## [2,] "Jan2" "Feb2" "Mar2" "Apr2" "May2" "Jun2" "Jul2" "Aug2" "Sep2" "Oct2" 
##      [,11]  [,12]  
## [1,] "Nov1" "Dec1" 
## [2,] "Nov2" "Dec2"

C <- matrix(month.abb, 2, 12, byrow = TRUE) 
C

##      [,1]  [,2]  [,3]  [,4]  [,5]  [,6]  [,7]  [,8]  [,9]  [,10] [,11] [,12] 
## [1,] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec" 
## [2,] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"
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Season as a 3rd order polynomial

Introduce 3 covariates: ,  and  where  is month (1 to 12).

where  is month at time .

m m2 m3 m

= + u + C +xt xt−1 ct wt

C = m + +ct β1 β2m2 β3m3

m t
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Season as polynomial

WA

OR

month effects

a 2 by 3 matrix
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TT <- nrow(chinook.month)/2 
monrow <- match(chinook.month$Month, month.abb)[1:TT] 
covariate <- rbind(monrow, monrow^2, monrow^3) 
rownames(covariate) <- c("m", "m2", "m3") 
covariate[,1:13]

##    [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] 
## m     1    2    3    4    5    6    7    8    9    10    11    12     1 
## m2    1    4    9   16   25   36   49   64   81   100   121   144     1 
## m3    1    8   27   64  125  216  343  512  729  1000  1331  1728     1
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WA and OR have different seasonal pattern.

WA and OR have same seasonal pattern.

C <- matrix(paste0(c("m", "m2", "m3"),".",rep(1:2,each=3)), 2, 3, 
            byrow = TRUE) 
C

##      [,1]  [,2]   [,3]   
## [1,] "m.1" "m2.1" "m3.1" 
## [2,] "m.2" "m2.2" "m3.2"

C <- matrix(c("m", "m2", "m3"), 2, 3, byrow = TRUE)
C

##      [,1] [,2] [,3] 
## [1,] "m"  "m2" "m3" 
## [2,] "m"  "m2" "m3"
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Season as a Fourier series

Fourier series are paired sets of sine and cosine waves

They are commonly used in time series analysis in the frequency domain

·

·
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Season as a Fourier series

Introduce 2 covariates: ,  where  is period (12 for
monthly) and  is the time step (1 to ).

where  is 12 (for monthly).

sin(2πt/p) cos(2πt/p) p

t T

= + u + C +xt xt−1 ct wt

C = sin(2πt/p) + cos(2πt/p)ct β1 β2

p

40/48



41/48



Season as a Fourier series

WA

OR

 

 

[ ]
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covariates

a 2 by T matrix
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TT <- nrow(chinook.month)/2 
covariate <- rbind(sin(2*pi*(1:TT)/12), cos(2*pi*(1:TT)/12)) 
plot(covariate[1,1:50], type="l") 
lines(covariate[2,1:50], col="red") 
title("covariates sines and cosines")
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WA and OR have different seasonal pattern.

WA and OR have same seasonal pattern.

C <- matrix(paste0(c("s", "c"),".",rep(1:2,each=2)), 2, 2, byrow = TRUE)
C

##      [,1]  [,2]  
## [1,] "s.1" "c.1" 
## [2,] "s.2" "c.2"

C <- matrix(c("s", "c"), 2, 2, byrow = TRUE)
C

##      [,1] [,2] 
## [1,] "s"  "c"  
## [2,] "s"  "c"
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Example Section 8.6

Seasonality of Lake WA plankton
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Missing covariates

SNOTEL Example Chapter 11

https://nwfsc-timeseries.github.io/atsa-labs/example-snotel-data.html
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https://nwfsc-timeseries.github.io/atsa-labs/example-snotel-data.html


Snow Water Equivalent (snowpack)

February snowpack estimates

47/48



Use MARSS models Chapter 11

Accounts for correlation across sites and local variability·
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