# Intro to Univariate State-Space Models 

FISH 507 - Applied Time Series Analysis

Eli Holmes

19 Jan 2021

## Dickey-Fuller test with 'ur.df'

```
\(\mathrm{x}<-\) cumsum(rnorm(100, 0.02, 0.2))
plot(x)
```



## Dickey-Fuller stationarity test

$$
\begin{aligned}
& x_{t}=\phi x_{t-1}+\mu+a t+e_{t} \\
& x_{t}-x_{t-1}=\gamma x_{t-1}+\mu+a t+e_{t}
\end{aligned}
$$

Test is for unit root is whether $\gamma=0$.

- Standard linear regression test statistics won't work since the response variable is correlated with our explanatory variable.
- ur. df () reports the critical values we want in the summary info or attr(test, "cval").
library(urca)
test <- ur.df(x, type="trend", lags=0)
summary (test)
Value of test-statistic is: -3.13754 .67734 .9583

Critical values for test statistics:
1 pct 5pct 10pct
tau3 -4.04-3.45-3.15
$\begin{array}{llll}\text { phi2 } & 6.50 & 4.88 & 4.16\end{array}$
$\begin{array}{llll}\text { phi3 } & 8.73 & 6.49 & 5.47\end{array}$

## attr(test, "teststat")

\#\# tau3 phi2 phi3
\#\# statistic -1.936144 2.9705192 .110123
attr(test,"cval")
\#\# 1pct 5pct 10pct
\#\# tau3 -4.04 -3.45 -3.15
\#\# phi2 $6.50 \quad 4.88 \quad 4.16$
\#\# phi3 $8.73 \quad 6.49 \quad 5.47$

The tau3 is the one we want. This is the test that $\gamma=0$ which would mean that $\phi=0$ (random walk).
$x_{t}=\phi x_{t-1}+\mu+a t+e_{t}$
$x_{t}-x_{t-1}=\gamma x_{t-1}+\mu+a t+e_{t}$
The hypotheses reported in the output are

- tau (or tau2 or tau3): $\gamma=0$
- phi reported values: are for the tests that $\gamma=0$ and/or the other parameters a and $\mu$ are also 0 .

Since we are focused on the random walk (non-stationary) test, we focus on the tau (or tau2 or tau3) statistics and critical values

## Univariate state-space models

Autoregressive state-space models fit a random walk $\operatorname{AR}(1)$ through the data. The variability in the data contains both process and non-process (observation) variability.


## PVA example

One use of univariate state-space models is "count-based" population viability analysis (chap 7 HWS2014)


Imagine you were tasked with estimating the probability of the population going extinct $(\mathrm{N}=1)$ within certain time frames (10, 20, years).


## How might we approach our forecast?

- Fit a model
- Simulate with that model many times
- Count how often the simulation hit $\mathrm{N}=1(\log \mathrm{~N}=0)$



## How you model your data has a large impact on your forecasts





Both observation and process error

## Stochastic level models

Flat level

$$
\begin{gathered}
x=u \\
y_{t}=x+v_{t}
\end{gathered}
$$

Linear level

$$
\begin{gathered}
x_{t}=u+c \times t \\
y_{t}=x_{t}+v_{t}
\end{gathered}
$$

Stochastic level

$$
\begin{gathered}
x_{t}=x_{t-1}+u+w_{t} \\
y_{t}=x_{t}+v_{t}
\end{gathered}
$$

## Nile River example






## Kalman filter and smoother

The Kalman filter is an algorithm for computing the expected value of the $x_{t}$ conditioned on the data up to $t-1$ and $t$ and the model parameters.

$$
\begin{gathered}
x_{t}=b x_{t-1}+u+w_{t}, \quad w_{t} \sim N(0, q) \\
y_{t}=z x_{t}+a+v_{t}, \quad v_{t} \sim N(0, r)
\end{gathered}
$$

The Kalman smoother computes the expected value of the $x_{t}$ conditioned on all the data.

## Diagnostics

Innovations residuals $=$
data at time $t$ minus model predictions given data up to $t-1$

$$
\hat{y_{t}}=E\left[Y_{t} \mid y_{t-1}\right]
$$

residuals(fit)
Standard diagnostics

- ACF
- Normality


## MARSS package

We will be using the MARSS package to fit univariate and multivariate state-space models.

$$
\begin{gathered}
\mathbf{x}_{t}=\mathbf{B} x_{t-1}+\mathbf{U}+\mathbf{w}_{t}, \quad \mathbf{w}_{t} \sim \operatorname{MVN}(0, \mathbf{Q}) \\
\mathbf{y}_{t}=\mathbf{Z} \mathbf{x}_{t}+\mathbf{A}+\mathbf{v}_{t}, \quad \mathbf{v}_{t} \sim \operatorname{MVN}(0, \mathbf{R})
\end{gathered}
$$

The main function is MARSS():
fit <- MARSS(data, model=list())
data are a univariate vector, univariate ts or a matrix with time going along the columns.
model list is a list with the structure of all the parameters.

## Univariate example

$$
\begin{gathered}
x_{t}=x_{t-1}+u+w_{t}, \quad w_{t} \sim N(0, q) \\
y_{t}=x_{t}+v_{t}, \quad v_{t} \sim N(0, r)
\end{gathered}
$$

Write where everything bold is a matrix.

$$
\begin{gathered}
x_{t}=\mathbf{B} x_{t-1}+\mathbf{U}+w_{t}, \quad w_{t} \sim \operatorname{MVN}(0, \mathbf{Q}) \\
y_{t}=\mathbf{Z} x_{t}+\mathbf{A}+v_{t}, \quad v_{t} \sim \operatorname{MVN}(0, \mathbf{R})
\end{gathered}
$$

```
mod.list <- list(
    B = matrix(1), U = matrix("u"), Q = matrix("q"),
    Z = matrix(1), A = matrix(0), R = matrix("r"),
    x0 = matrix("x0"),
    tinitx = 0
)
```


## Let's see some examples

