
Homework #5 - Fitting DLMs
Answer Key

Background

Here are the answers for the homework problems on fitting Dynamic Linear Models (DLMs). We
begin by getting the data, which have the following structure:

• brood_yr: the year the salmon were born
• spawners: number of spawners
• recruits: number of surviving offspring that “recruit” to the fishery
• pdo_summer_t2: PDO during first summer at sea
• pdo_winter_t2: PDO during first winter at sea

get S-R data; cols are:
data(KvichakSockeye, package = "atsalibrary")
SR_data <- KvichakSockeye

head of data file
head(SR_data)

brood_year spawners recruits pdo_summer_t2 pdo_winter_t2
1 1952 NA 20200 -2.79 -1.68
2 1953 NA 593 -1.20 -1.05
3 1954 NA 799 -1.85 -1.25
4 1955 NA 1500 -0.60 -0.68
5 1956 9440 39000 -0.50 -0.31
6 1957 2840 4090 -2.36 -1.78

The first few and last years of the data set have NA for the spawners, so we should remove those
from the analysis.

SR_data <- subset(SR_data, brood_year >= 1956 & brood_year <= 1998)

Question 1

Begin by fitting a reduced form of Equation (9.33) that includes only a time-varying level (αt) and
observation error (vt). That is,

1

log(Rt/St) = αt + vt

αt = αt−1 + wt
(1)

This model assumes no density-dependent survival in that the number of recruits is an ascending
function of spawners. Plot the ts of αt and note the AICc for this model. Also plot appropriate
model diagnostics.

Answer

The stock-recruit model here is a random walk observed with error, which we have seen a lot in
class. To see the equivalency, instead write the observation model as

yt = xt + vt (2)

where yt = log(Rt/St) and xt = αt. The process model is then

xt = xt−1 + wt (3)

The first thing we need is to compute the response variable yt = log(Rt/St).

Time series of ln(R/S)
lnRS <- log(SR_data$recruits / SR_data$spawners)
dat <- matrix(lnRS, nrow = 1)
number of years of data--we'll need this later
TT <- length(lnRS)

Now we can set up the DLM as a level-only model (i.e., a random walk with observation error) and
fit it with MARSS.

library(MARSS)
MARSS model defn
for process eqn
BB <- matrix(1)
UU <- matrix(0)
QQ <- matrix("q")
for observation eqn
ZZ <- matrix(1)
AA <- matrix(0)
RR <- matrix("r")
only need starting values for regr parameters
inits_list <- list(x0 = matrix(1))
list of model matrices & vectors
mod_list <- list(B = BB, U = UU, Q = QQ, Z = ZZ, A = AA, R = RR, tinitx = 0)
fit DLM
Q1 <- MARSS(dat, inits = inits_list, model = mod_list)

2

Success! abstol and log-log tests passed at 26 iterations.
Alert: conv.test.slope.tol is 0.5.
Test with smaller values (<0.1) to ensure convergence.
##
MARSS fit is
Estimation method: kem
Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
Estimation converged in 26 iterations.
Log-likelihood: -51.87187
AIC: 109.7437 AICc: 110.3591
##
Estimate
R.r 0.212
Q.q 0.303
x0.x0 1.001
Initial states (x0) defined at t=0
##
Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.

plot the time-varying level
plot.ts(t(Q1$states), ylab = expression(alpha[italic(t)]))

Time

α t

0 10 20 30 40

−
1.

0
0.

0
0.

5
1.

0
1.

5

get AICc
Q1$AICc

[1] 110.3591

3

And finally examine some diagnostic plots:

get list of Kalman filter output
kf_out <- MARSS::MARSSkfss(Q1)
forecast errors
innov <- kf_out$Innov
Q-Q plot of forecast errors
qqnorm(t(innov), main = "", pch = 16, col = "blue")
add y = x line for easier interpretation
qqline(t(innov))

−2 −1 0 1 2

−
1.

5
−

0.
5

0.
5

1.
5

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

plot ACF of innovations
acf(t(innov), lag.max = 10, main = "ACF for Q1 residuals")

4

0 2 4 6 8 10

−
0.

2
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F
ACF for Q1 residuals

The residuals seem to be reasonably well behaved in that there appear normal with no significant
autocorrelation.

Question 2

Fit the full model specified by Equation (9.33). For this model, obtain the time series of αt, which
is an estimate of the stock productivity in the absence of density-dependent effects. How do these
estimates of productivity compare to those from the previous question? Plot the ts of αt and note
the AICc for this model. Also plot appropriate model diagnostics. (Hint: If you don’t want a
parameter to vary with time, what does that say about its process variance?)

log(Rt/St) = αt + blog(St) + vt

αt = αt−1 + wt
(4)

Answer

Now we need to fit a DLM with a time-varying level (intercept), but time-invariant slope. Begin
by obtaining the time series of spawners to use as the covariate.

Sp <- matrix(SR_data$spawners, nrow = 1)

Set up the MARSS model structure so α varies with time, but not β, which means q = 0 for β.
This means that Q should be

5

Q =
[
qα 0
0 0

]
(5)

number of regr coefs
m <- 2
MARSS model defn
for process eqn
B <- diag(m) ## 2x2; Identity
U <- matrix(0,nrow = m, ncol = 1) ## 2x1; both elements = 0
Q <- matrix(list(0), m, m) ## 2x2; all 0 for now
Q[1,1] <- "q_alpha" ## 2x2; diag = (q1,q2)
for observation eqn
Z <- array(NA, c(1, m, TT)) ## NxMxT; empty for now
Z[1,1,] <- rep(1, TT) ## Nx1; 1's for intercept
Z[1,2,] <- Sp ## Nx1; regr variable
A <- matrix(0) ## 1x1; scalar = 0
R <- matrix("r") ## 1x1; scalar = r
only need starting values for regr parameters
inits_list <- list(x0 = matrix(c(0, 0), nrow = m))
list of model matrices & vectors
mod_list <- list(B = B, U = U, Q = Q, Z = Z, A = A, R = R)
list of control params
con_list <- list(maxit = 2000)
fit DLM
Q2 <- MARSS(dat, inits = inits_list, model = mod_list, control = con_list)

Success! abstol and log-log tests passed at 26 iterations.
Alert: conv.test.slope.tol is 0.5.
Test with smaller values (<0.1) to ensure convergence.
##
MARSS fit is
Estimation method: kem
Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
Estimation converged in 26 iterations.
Log-likelihood: -51.80921
AIC: 111.6184 AICc: 112.6711
##
Estimate
R.r 0.217557
Q.q_alpha 0.293165
x0.X1 0.936822
x0.X2 0.000007
Initial states (x0) defined at t=0
##
Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.

6

plot the time-varying level
plot.ts(Q2$states[1,], ylab = expression(alpha[italic(t)]))

Time

α t

0 10 20 30 40

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

Now let’s check the AICc value.

get AIC
Q2$AICc

[1] 112.6711

The AICc value for this model is a bit higher than that for Q1.

Let’s check out some diagnostic plots for the model in Q2. First we get the model innovations from
our fitted MARSS object.

get list of Kalman filter output
kf_out <- MARSS::MARSSkfss(Q2)
forecast errors
innov <- kf_out$Innov

Q-Q plot of forecast errors
qqnorm(t(innov), main = "", pch = 16, col = "blue")
add y = x line for easier interpretation
qqline(t(innov))

7

−2 −1 0 1 2

−
1

0
1

2

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

plot ACF of innovations
acf(t(innov), lag.max = 10, main = "ACF for Q2 residuals")

0 2 4 6 8 10

−
0.

2
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for Q2 residuals

The diagnostics indicate that there is some significant autocorrelation in the residuals at lags 5 &
10. The autocorrelation at lag 5 is likely a reflection of the dominant age classes of these fish.

8

Question 3

Fit the model specified by Equation (9.34) with the summer PDO index as the covariate
(pdo_summer_t2). What is the mean level of productivity? Plot the ts of δt and note the AICc for
this model. Also plot appropriate model diagnostics.

log(Rt/St) = α+ δtXt − blog(St) + vtδt = δt−1 + wt (6)

Answer

Now we need to fit a DLM so α and β are time-invariant, but δ varies by year. This means that Q
should be

Q =

0 0 0
0 0 0
0 0 qδ

 (7)

number of regr coefs
m <- 3
MARSS model defn
for process eqn
B <- diag(m) ## 2x2; Identity
U <- matrix(0, nrow = m, ncol = 1)
Q <- matrix(list(0), m, m)
place delta last--it's the only one to time-vary
Q[3,3] <- ("q_delta")
for observation eqn
Z <- array(NA, c(1, m, TT)) ## NxMxT; empty for now
Z[1,1,] <- rep(1, TT) ## 1's for intercept
Z[1,2,] <- SR_data$spawners ## Sp regr variable
Z[1,3,] <- SR_data$pdo_summer_t2 ## summer PDO regr variable
A <- matrix(0) ## 1x1; scalar = 0
R <- matrix("r") ## 1x1; scalar = r
only need starting values for regr parameters
inits_list <- list(x0 = matrix(c(0, 0, 0), nrow = m))
list of model matrices & vectors
mod_list <- list(B = B, U = U, Q = Q, Z = Z, A = A, R = R)
list of control params
con_list <- list(maxit = 2000, allow.degen = TRUE)
fit DLM
Q3 <- MARSS(dat, inits = inits_list, model = mod_list, control = con_list)

Success! abstol and log-log tests passed at 1172 iterations.
Alert: conv.test.slope.tol is 0.5.
Test with smaller values (<0.1) to ensure convergence.
##

9

MARSS fit is
Estimation method: kem
Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
Estimation converged in 1172 iterations.
Log-likelihood: -54.70428
AIC: 119.4086 AICc: 121.0302
##
Estimate
R.r 7.46e-01
Q.q_delta 0.00e+00
x0.X1 3.56e-01
x0.X2 1.37e-05
x0.X3 -1.35e-01
Initial states (x0) defined at t=0
##
Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.

mean productivity
mean(Q3$states[1,])

[1] 0.3563945

plot the time-varying effect of PDO
plot.ts(Q3$states[3,], ylab = expression(delta[italic(t)]))

Time

δ t

0 10 20 30 40

−
0.

18
−

0.
14

−
0.

10

Here, as in Q2, there does not appear to be any model support for a time-varying δ.

10

get AIC
Q3$AICc

[1] 121.0302

Again, this model is no better than those in Q1 or Q2.

Here are some diagnostic plots:

get list of Kalman filter output
kf_out <- MARSS::MARSSkfss(Q3)
forecast errors
innov <- kf_out$Innov
Q-Q plot of forecast errors
qqnorm(t(innov), main = "", pch = 16, col = "blue")
add y = x line for easier interpretation
qqline(t(innov))

−2 −1 0 1 2

−
2

−
1

0
1

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

plot ACF of innovations
acf(t(innov), lag.max = 10, main = "ACF for Q3 residuals")

11

0 2 4 6 8 10

−
0.

2
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F
ACF for Q3 residuals

There is some indication that our model is not adequately accounting for autocorrelation in the
residuals (i.e., significant correlation at lag = 1).

Question 4

Fit the model specified by Equation (9.34) with the winter PDO index as the covariate
(pdo_winter_t2). What is the mean level of productivity? Plot the ts of δt and note the AICc for
this model. Also plot appropriate model diagnostics.

Again we need to fit a DLM so that α and β are time-invariant, but δ varies by year. As for Q3,
Q should be

Q =

0 0 0
0 0 0
0 0 qδ

 (8)

number of regr coefs
m <- 3
MARSS model defn
for process eqn
B <- diag(m) ## 2x2; Identity
U <- matrix(0,nrow = m, ncol = 1)
Q <- matrix(list(0), m, m)
place delta last--it's the only one to time-vary
Q[3,3] <- ("q_delta")

12

for observation eqn
Z <- array(NA, c(1, m, TT)) ## NxMxT; empty for now
Z[1,1,] <- rep(1, TT) ## 1's for intercept
Z[1,2,] <- SR_data$spawners ## Sp regr variable
Z[1,3,] <- SR_data$pdo_winter_t2 ## winter PDO regr variable
A <- matrix(0) ## 1x1; scalar = 0
R <- matrix("r") ## 1x1; scalar = r
only need starting values for regr parameters
inits_list <- list(x0 = matrix(c(0,0,0), nrow = m))
list of model matrices & vectors
mod_list <- list(B = B, U = U, Q = Q, Z = Z, A = A, R = R)
list of control params
con_list <- list(maxit = 2000, allow.degen = TRUE)
fit DLM
Q4 <- MARSS(dat, inits = inits_list, model = mod_list, control = con_list)

Success! abstol and log-log tests passed at 18 iterations.
Alert: conv.test.slope.tol is 0.5.
Test with smaller values (<0.1) to ensure convergence.
##
MARSS fit is
Estimation method: kem
Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
Estimation converged in 18 iterations.
Log-likelihood: -54.09732
AIC: 118.1946 AICc: 119.8163
##
Estimate
R.r 0.508701
Q.q_delta 0.143651
x0.X1 0.239353
x0.X2 0.000016
x0.X3 -0.042999
Initial states (x0) defined at t=0
##
Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.

mean productivity
mean(Q4$states[1,])

[1] 0.2393535

plot the time-varying effect of PDO
plot.ts(Q4$states[3,], ylab = expression(delta[italic(t)]))

13

Time

δ t

0 10 20 30 40

−
1.

0
−

0.
5

0.
0

0.
5

Here it appears as though there is, in fact, some data support for a time-varying effect of PDO.

get AIC
Q4$AICc

[1] 119.8163

However, this model is not any better than that in Q1 or Q2.

Here are some diagnostic plots:

get list of Kalman filter output
kf_out <- MARSS::MARSSkfss(Q4)
forecast errors
innov <- kf_out$Innov
Q-Q plot of forecast errors
qqnorm(t(innov), main = "", pch = 16, col = "blue")
add y = x line for easier interpretation
qqline(t(innov))

14

−2 −1 0 1 2

−
2

−
1

0
1

2
3

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

plot ACF of innovations
acf(t(innov), lag.max = 10, main = "ACF for Q4 residuals")

0 2 4 6 8 10

−
0.

4
0.

0
0.

4
0.

8

Lag

A
C

F

ACF for Q4 residuals

As in Q3 there is some indication that our model is not adequately accounting for autocorrelation
in the residuals (i.e., signficant correlation at lags 1 & 4-5).

15

Question 5

Based on AICc, which of the models above is the most parsimonius? Is it well behaved (i.e., are
the model assumptions met)? Plot the model forecasts for the best model. Is this a good forecast
model?

Here is a table of AICc values for all 4 models.

tbl_aicc <- data.frame(model = paste0("Q",seq(4)),
AICc = round(c(Q1$AICc,Q2$AICc,Q3$AICc,Q4$AICc),1))

tbl_aicc

model AICc
1 Q1 110.4
2 Q2 112.7
3 Q3 121.0
4 Q4 119.8

The model we fit in Q1 appears to have the lowest AIC, so let’s use that for forecasting.

Here’s how to obtain the time series of forecasts (and their SE) for the best model.

get list of Kalman filter output
kf_out <- MARSS::MARSSkfss(Q1)
forecasts of regr parameters; 2xT matrix
eta <- kf_out$xtt1
predictor variable (1's only for the intercept)
Z <- array(1, c(1,1,TT)) ## NxMxT; empty for now
ts of E(forecasts)
fore_mean <- vector()
for(t in 1:TT) {

fore_mean[t] <- Z[,,t] %*% eta[,t,drop = F]
}
variance of regr parameters; 1x2xT array
Phi <- kf_out$Vtt1
obs variance; 1x1 matrix
R_est <- coef(Q1, type = "matrix")$R
ts of Var(forecasts)
fore_var <- vector()
for(t in 1:TT) {

tZ <- matrix(Z[,,t], 1, 1) ## transpose of Z
fore_var[t] <- Z[,,t] %*% Phi[,,t] %*% tZ + R_est

}

And now we can plot them.

fup <- fore_mean + 2 * sqrt(fore_var)
flo <- fore_mean - 2 * sqrt(fore_var)

16

par(mar = c(4, 4, 0.1, 0), oma = c(0, 0, 2, 0.5))
ylims <- c(min(flo), max(fup))
plot(SR_data$brood_year, t(dat), type = "p", pch = 16, ylim = ylims,

col = "blue", xlab = "Year", ylab = "ln(R/S") ##, xaxt = "n")
lines(SR_data$brood_year, fore_mean, type = "l", xaxt = "n", ylab = "", lwd = 3)
lines(SR_data$brood_year, fup)
lines(SR_data$brood_year, flo)

1960 1970 1980 1990

−
3

−
2

−
1

0
1

2
3

Year

ln
(R

/S

Overall, the accuracy of the forecasts is a bit suspect as many observations are at 0.5+ log-units
from the forecast. Although most of the observed ln(R/S) fell within the 95% forecast intervals,
the intervals themselves are relatively large and span a large range of R/S.

17

	Background
	Question 1
	Answer

	Question 2
	Answer

	Question 3
	Answer

	Question 4
	Question 5

