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Topics

ØUnivariate and multivariate Gompertz models 

ØExample study: CA kelp forest ecosystem

Simple 2-spp model
Ø2x2 B matrix

Large multivariate models
ØBig B matrices



Mean-reverting processes

In lecture, I will talk 
about estimating 
mean-reversion in 
the context of 
density-
dependence and 
species 
interactions, but 
mean-reverting 
stochastic 
processes are 
ubiquitous.

The Ornstein-Uhlenbeck process is the classic 
continuous time mean-reverting stochastic process.  
In the population dynamics literature, the Gompertz
model is the classic discrete time mean-reverting 
process (although the Gompertz model also refers to 
a continuous time version).



Univariate Gompertz models

ttt wubxx ++= -1



Density dependence
univariate discrete exponential growth not in log-space

( )11 -- ×= ttt nfnn

univariate discrete density-dependent growth not in log-space

The shape of f(n_t-1) determines the dynamics of the system:
• stable or unstable equilibrium
• Speed at which equilibrium is approached
• Equilibrium level
• Sensitivity to perturbations

)exp(1 unn tt ×= -

))(exp( 11 -- +×= ttt nfunn
general Specific type



( )[ ]11 ln1exp -- -+×= ttt nbunn



Gompertz model written in log space is
AR(1)

( )[ ]11 ln1exp -- -+×= ttt nbunn
Taking the natural log of both sides

( ) 11 ln1lnln -- -++= ttt nbunn

111 lnlnln --- -++= ttt nnbun

1ln -+= tnbu

1-+= tt bxux
Substituting xt for ln nt

AR(1) minus the noise term



Properties of this model

Our interest

u/(1-b)



Add stochasticity (process error)

random walk

2-pt oscillation

b=1

u/(1-b)



Equilibrium for the stochastic Gompertz
process

It has a stationary distribution
probability distribution of Xt as t→ ∞
given |b| < 1 

Normally distributed with
mean µ∞ and variance u∞

Fig. 1 - Ives et al. (2003)



Basic features of the Gompertz process

S. E. Hampton, NCEAS, UCSB, hampton@nceas.ucsb.edu, 7 July 2007

• Mean reverting, aka density-dependent

• Stationary, so it fluctuates around a mean

• Point equilibrium as opposed to a cycle equilibrium like 

Lotka-Volterra (Lynx & hare) models you studied in Ecology 

101

• Can be seen as a locally linear approximation of other types 

of density-dependent interaction models

“locally linear” is jargon for “only holds for sure if x doesn’t 

change too much”.  In our case, x = log(n) = log abundance.

Main properties



Real systems do not necessarily have log-linear 
density-dependence

Note: If N is not spanning very large values
a linear model may suffice

log Nt

Nonlinear Linear approx.

log Nt+1

log Nt

log Nt+1

Modern literature on MAR(1) models allow B to be time-varying which allows 
that linear approximation to vary in time.



observation error is known a problem
obs error = spurious density-dependence

2010 2008



Estimating R matrix is not so easy, but 
replication helps A LOT

MARSS models (however you fit them) allow you to easily incorporate replication. 



S. E. Hampton, NCEAS, UCSB, hampton@nceas.ucsb.edu, 7 July 2007

Predator-prey interactions



2-species: Predator-Prey
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B = interaction matrix

MAR(1): xt=Bxt-1 + u + wt
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B = interaction matrix

Adding covariates

covariate effect

covariates

Process variation not from 
covariates (“unexplained”)
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Chapter 14: HWS18a Moose and Wolf 
example analysis

data and images from www.isleroyalewolf.org

Effect of winter snow and 
summer heat on moose 
and wolves.

http://www.isleroyalewolf.org/


Using MAR models to understand dynamics in 
larger communities

Hampton et al. (2006)Dashed lines are (+) interactions; solid lines are (-)



Using MAR models to  quantify stability



Using MAR models to identify the ‘important’ links

Hampton et al. (2006)Dashed lines are (+) interactions; solid lines are (-)



MAR(1) Models

wt ∼MVN 0,Q( )
State equation

yt = xt + vt vt ∼MVN 0,R( )
Observation equation

xt = a+Bxt−1 +Cct +wt



MAR(1) Models

wt ∼MVN 0,Q( )
State equation

yt = xt + vt vt ∼MVN 0,R( )
Observation equation

xt = a+Bxt−1 +Cct +wt

f(…)

Another observation error model



Multivariate AR(1) process

B matrix structure:
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MAR(1) models have been widely used to study dynamics of 
plankton communities

Many ecological applications are reviewed in
Hampton, S.E., E.E. Holmes, D.E. Pendleton, L.P. Scheef, M.D. Scheuerell, and E.J. Ward. 

2013. Quantifying effects of abiotic and biotic drivers on community dynamics 
with multivariate autoregressive (MAR) models. Ecology 94:2663-2669



Lake Washington: a large change in sewage inputs in the late 
1960s led to a dramatic change in the plankton community

Hampton et al. (2006)



Multivariate AR(1) process, “MAR1”

Assume p different interacting species, then for each sp. i:
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B

Note no SS part



Multivariate AR(1) process
Can add effects of q different environmental covariates:

ck,t is covariate k (e.g., temperature) at time t
Cik is effect of covariate k on species i
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Multivariate AR(1) process

Can write all of this as:

xt = u+Bxt−1 +Cct +wt wt ~ MVN 0,Q( )

xt is p x 1 vector of species abundance at time t
u is p x 1 vector of intrinsic growth rates

B is p x pmatrix of density-dependent effects

xt-1 is p x 1 vector of species abundance at time t-1

C is p x qmatrix of covariate effects

ct is q x 1 vector of covariate values at time t



Estimating changes in species 
interactions & community stability 
in a kelp forest ecosystem

Mark Scheuerell NOAA Northwest Fisheries Science Center

Eric Ward NOAA Northwest Fisheries Science Center

Steve Katz Washington State University
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Kelp forest ecosystems

Images courtesy of Google & ImageQuilts



Conventional wisdom

Otters

Urchins

Kelps



Conventional wisdom

Images courtesy of R Schwemmer & NPS

Otters

Urchins

Kelps

Urchins

Kelps



Artwork by Shannon 
Hennessey



Questions about the larger community

Invert-
eaters

Fish-
eaters

Otters

Invert 
grazers

Kelps

Herb. 
fish

1) How do community 
interactions change over time?

2) How do we tease 
out interaction 
changes in the 
face of 
environmental 
changes?



Community model in matrix form

xt = a+Bxt−1 +Cct +wt

Ives et al (2003) Ecology

log 
densities

Intrinsic
growth rates

Interactions 
strengths

Covariate
effects

Environmental
variation

Covariates



Two issues with this model

1) This describes a process with 
no sampling or observation 
error

2) The community 
interactions don’t vary with 
time

xt = a+Bxt−1 +Cct +wt



State-space model

wt ∼MVN 0,Q( )
State equation

yt = xt + vt vt ∼MVN 0,R( )
Observation equation

xt = a+Bxt−1 +Cct +wt



State-space model

wt ∼MVN 0,Q( )
State equation

yt = xt + vt vt ∼MVN 0,R( )
Observation equation

xt = a+Bxt−1 +Cct +wt



© KQED

© NW College of Agriculture

Count data are 
the basis for 
many studies

log(0) = -Inf (!)



Allowing for count data

Observation of guild g at location i at time t

yg,i,t ~ NegBin pg, j,t, rg( )

pg, j,t =
rg

rg +µg, j,t

log µg, j,t( ) = xg, j,t
State



Time-varying interactions

State equation

xt = a+Btxt−1 +Cct +wt

vec Bt( ) ∼MVN vec Bt−1( ),S( )



Kelp forests in southern California

Los Angeles
San Nicolas 

Island

Images courtesy of Google



Data for San Nicolas Island

• 7 sites around the island

• Biannual surveys from 
1980-2011 (n = 63)

• Divers collect data on:
• Fish (59 spp)
• Inverts (14 spp)
• Kelps (6 spp)

Kenner et al (2013) A multi-decade time series of kelp forest 
community structure at San Nicolas Island, California (USA). 
Ecology 94:2654

Image courtesy of Google



Sea otters at San Nicolas

Image courtesy of Steve Lonhart
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El Niño around San Nicolas

Image courtesy of NOAA
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Urchin harvest at San Nicolas
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Fitting the model

• 6 observations of 4 states 1980 to 2011 
• Each state has same
• MCMC via JAGS to allow observation errors 

with negative binomial error model.  

Bt



B matrix
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Changes in density & density-dependence
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Examples of trophic effects
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Stability



Stationary distribution for MAR(1)

m∞ = I−B( )−1u

Vec V∞( ) = I−B⊗B( )−1 Vec Q( )

Mean vector:

Covariance matrix:

(analogous to the univariate case)

The theory in this part of the lecture draws from
Ives AR, Dennis B, Cottingham KL, Carpenter SR. 2003. Estimating community stability and 

ecological interactions from time series data. Ecological Monographs 73: 301-330



Stability properties of MAR(1) models
• Our interest is in stable systems

(i.e. all eigenvalues of B lie within unit circle)

• Stability can be measured in several ways, but 
here are three that we will use:

Stability measure More stable when…

Variance variance of the stationary distribution is low 
relative to that for the process error

Return rate rapid approach to the stationary distribution 
(i.e. high return rate)

Reactivity fewer departures from the mean of the 
stationary distribution (i.e. low reactivity)



Stability properties of MAR(1) models

• In stochastic models, equilibrium is the stationary distribution
• Rate of return to the stochastic equilibrium is the rate at which 

the transition distribution converges to the stationary distribution 
from an initial, known value

• The more rapid the convergence, the more stable the system

Return rates (ie, resilience)

Fig. 2B - Ives et al. (2003)

More stable Less stable



Fig. 3 - Ives et al. (2003)

Stability properties of MAR(1) models

Return rates

• Rate of return increases as |b| gets smaller

• Rate of return to mean governed by 
dominant eigenvalue of B º max(lB)

• Rate of return of covariance defined by 
dominant eigenvalue of BÄB º max(lBÄB)

Take home msg: you can write the return rate 
as a function of B.  So if we can estimate B, 
we can say something about the stability of 
the system as measure by return rate.



Stability properties of MAR(1) models

Fig. 2C - Ives et al. (2003)

Low reactivity High reactivity

A “reactive” system moves away from a stable equilibrium 
following a perturbation, even though the system will 
eventually return to equilibrium.

Reactivity

High reactivity occurs when species interactions greatly amplify the 
environmental forcing

Not how fast does it return but how far does it go?



= −
tr Q[ ]
tr V∞[ ]

≤max λ $BB( )−1

Fig. 3 - Ives et al. (2003)

Stability properties of MAR(1) models

Reactivity

2
1 ¥- -= µtX

Squared Euclidian distance for Xt-1 from µ∞

= u+BXt−1 −µ∞

2
= B Xt−1 −µ∞( )

2
Squared Euclidian distance for Xt from µ∞

( ) 2
1

2
1 ¥-¥- ---= µµ tt XXB

Change in squared Euclidian distance

Expectation of this difference

�worst-case�
scenario Another form of reactivity is given in Neubert et al. (2009)



Stability properties of MAR(1) models

Fig. 2A - Ives et al. (2003)

More stable Less stable

Variance comparison

• Generally interested in the time spent 
away from equilibrium

• More time à greater variance

Combines properties of both return rate and reactivity



Stability properties of MAR(1) models

Variance comparison

1) ( )2
2

1
~

l
yu
-

=¥ Smaller là smaller uà more stable

2) det V∞ −Q( ) = det V∞( )det B( )2

det B( )2 =
det V∞ −Q( )
det V∞( )

= λ1λ2λ3!λp( )
2

( ) ( ) p
p

p /2
321

/2det llll !=B

To standardize across various systems

Smaller là smaller det(B)2/pà more stable
Fig. 3 - Ives et al. (2003)



Estimating changes in stability

Francis TB, Wolkovich EM, Scheuerell MD, Katz SL, Holmes EE, et al. (2014) Shifting Regimes and Changing Interactions in the 
Lake Washington, U.S.A., Plankton Community from 1962–1994. PLOS ONE 9(10): e110363. 
https://doi.org/10.1371/journal.pone.0110363
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0110363

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0110363


Monthly mean densities of Daphnia, non-Daphnia, Oscillatoria, and 
diatoms and green algae.  Francis et al. 2014.



Shifting effects of Daphnia on other species.  Francis et al. 2014.



Shifting stability in the community.  Francis et al. 2014.

Unstable

More stable



Finding the important structure



Goal is to find a simpler system to explain the observed 
species changes

13 x 13 B matrix Compare 
model support 
of models with 

different B’s 
set to zero

156 non-diagonal B terms.  There are approximately 1e+47 (that’s 1 
followed by 47 zeros) unique B matrices with different 0s.

1) We cannot do a brute force fitting of all models.
2) We should try to set some of those Bs to 0 via prior knowledge 

about the system
3) We need a fast estimation algorithm



Search strategies

B =

b11 0 b13 b14
b21 b22 b23 0
b31 0 b33 b34
0 b42 0 b44
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Search strategy for large model spaces

Best of 100 random search
1) 100 models are generated by randomly including (50/50) each 

b element.  
2) Best model (lowest AIC or BIC) is saved
3) Repeat 100 times to get a set of 100 “best” model.
4) Remove any variables that appears in less than 15 of the 100 

best models.
5) Repeat the ‘Best of 100’ search (steps 1-3) with the new 

smaller set of variables.
6) Repeat steps 1-5 until number of variables in the 100 best is 

stable and chose best model.



Search strategy for large model spaces

Exhaustive via “leap and bound” algorithm
1) Algorithms to find best model over all possible variable 

combinations without actually doing exhaustive search.

Forward step-wise
1) Start with no off-diagonal b.
2) Add the b that most improves (reduces) model AIC
3) Stop at some step-AIC threshold

Backward step-wise
1) Same as forward but start with full model (all b’s)



Model diagnostics

Once selected, a MAR(1) model should be 
scrutinized
Useful diagnostics include:

1) Are residuals temporally autocorrelated (via ACF)?
2) Are mean or variance of the residuals correlated with any variates or 

covariates (via X-Y plots)?
3) Are residuals normally distributed (via normal probability plots)?
4) What proportion of the variance is explained by the model (via 

conditional R2)?
Note: conditional R2 measures the proportion of change in log density 

from time t-1 to t



Model diagnostics example

Example of demeaned plankton data, 4 spp (Ives et al 2003)
- we are fitting one B matrix (and u)
- so level changes need to be explained by the covariates

xt = u+Bxt−1 +Cct +wt



• Fit a MAR community model to freshwater 
plankton data from Ives et al. (2003)

• Add covariates to the above model

• Add an additional covariate (fish) observed 
with error

• Compute stability metrics

• See MAR1 package on CRAN to apply the Ives 
et al. 2003 and other search algorithms to data 
sets.
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