
Semi- and non-parametric time series models
FISH 507 – Applied Time Series Analysis

Eric Ward

26 Feb 2019

Overview of today’s material

I Gaussian process models
I Neural network models
I Empirical dynamic modeling

Gaussian processes for time series

Last week, we discussed exponential smoothing and in lab touched
on GAMs

I Both approaches are similar in that they borrow information
from neighbors

I Exponential smoothing usually borrows information from past
data for forecasting

I Generalized additive models (GAMs) usually borrow
information from both future and past data

Gaussian processes for time series

GAMs estimate the trend using a smooth function,

E [Y] = B0 + f (x)

where like regression, we assume Y ∼ Normal (E [Y] , σ)

I The smooth function approximates the trend at a smaller
subset of locations (aka knots)

I The density and location of the knots can affect how ‘wiggly’
the function is

Gaussian processes for time series
For data that are regularly spaced in time, this probably isn’t a big
deal

I For instance if we use a cubic spline (default) on the ‘airmiles’
dataset (n = 23), a function approximating the trend is
estimated at 10 equally spaced locations (grey vertical lines).

0

10000

20000

30000

1940 1945 1950 1955 1960

t

y

I This fit looks pretty reasonable

Gaussian processes for time series
Let’s try again, this time knocking a few holes in the data.
Removing years 1950:1953 and 1955:1959, the knot locations are no
longer equally spaced, and weighted more toward the locations of
data points.

I Greater spacing between knots = less flexibility, more
uncertainty (you can look at the ‘se.fit’ part of predict output)

0

10000

20000

30000

1940 1945 1950 1955 1960

t

y

Gaussian processes for time series

Recapping, GAMs are estimating the underlying trend using a
smooth function,

E [Y] = B0 + f (x)

I It’s important to note that this underlying trend function f (x)
is modeling the mean

I Smooths are very flexible (with respect to # knots, locations,
smooth type). See ‘mgcv’ and ‘gamm’

We’re going to leave GAMs alone for now, but there’s lots of great
references out there. Examples:

I Gavin Simpson’s work with GAMs and time series here
I Simon Wood’s book

https://www.biorxiv.org/content/10.1101/322248v1
https://www.amazon.com/Generalized-Additive-Models-Introduction-Statistical/dp/1498728332/ref=asc_df_1498728332/?tag=hyprod-20&linkCode=df0&hvadid=312065538926&hvpos=1o1&hvnetw=g&hvrand=11863417304955012193&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9033315&hvtargid=pla-305424873573&psc=1

Gaussian processes for time series

Similarities between GAMs and GP models:

I GAMs and GP predictive models use reduced dimensionality
(knots) to constrain flexibility

Differences:

I GAMs use smooth functions & knot locations to constrain how
neighbors affect mean

I GP models use covariance function to control how much
neighbors can influence eachother based on how far apart they
are

Gaussian processes for time series
We have some function we want to approximate

0 20 40 60 80 100

0
2

4
6

8
10

X

Y

Gaussian processes for time series
We could estimate the latent values at all observed locations *
What are the downsides to this?

0 20 40 60 80 100

0
2

4
6

8
10

X

Y

Gaussian processes for time series
Instead, consider estimating them at a subset of points and
extrapolating (aka Kriging)

I these locations are called the knots
I extrapolating to other locations = predictive process model

0 20 40 60 80 100

0
2

4
6

8
10

X

Y

Gaussian processes for time series

Lots of applications in Fisheries and Ecology

I Munch et al. 2005 link
I Munch et al. 2018 link

Especially with applications to spatial models

I Latimer et al. 2009 link
I Finley et al. 2017 link
I Gelfand et al. 2018 link
I Anderson et al. 2018 link
I Shelton et al. 2014 link
I Ward et al. 2018 link

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.6285&rep=rep1&type=pdf
https://onlinelibrary.wiley.com/doi/full/10.1111/faf.12304
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1461-0248.2008.01270.x
https://arxiv.org/abs/1702.00434
https://www.sciencedirect.com/science/article/pii/S2211675316300033
https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1002/ecy.2403
http://www.nrcresearchpress.com/doi/10.1139/cjfas-2013-0508#.XHLYt89KiM4
https://www.ncbi.nlm.nih.gov/pubmed/30121848

Gaussian processes for time series

Several options for estimating f(x) at knot locations

I Common choice is random effects

Gaussian Process models use the covariance function, Σ

I e.g. Assume the random effects are MV Normal, e.g.
w ∼ MVNormal(u,Σ)

Gaussian processes for time series

We could estimate elements of Σ as unconstrained matrix (e.g.
‘unconstrained’ in MARSS)

I but that’s a lot of parameters! ~ m*(m+1)/2

We could try to zero out some elements of Σ

I but this will cause problems: if x1 and x2 are correlated, and x1
and x3 are correlated, x2 and x3 have to be correlated too

Gaussian processes for time series

Instead, we’ll use a covariance function (aka kernel). Common
choices are

I Exponential
I Squared-exponential (Gaussian)
I Matern
I Anisotropic functions

Gaussian processes for time series

For example with the exponential function,

Σi ,j = σ2exp (−di ,j/τ)

I σ2 is the variance parameter (estimated)
I di ,j is the distance between points, e.g. |xi − xj |
I distance could be distance in time, space, etc
I τ is a scaling parameter (estimated)

Gaussian processes for time series

Question:

For our exponential function, how do σ and τ control
‘wiggliness’?

Gaussian processes for time series

For our exponential function, how do σ and τ control
‘wiggliness’?

I Larger values of σ introduce more variability between f (x) at
knot locations

I Larger values of τ will make the ‘exp(. . .)’ term closer to 1

Gaussian processes for time series

Revisiting univariate state space models, what are some reasons the
AR process is used?

xt = xt−1 + wt , wt ∼ N(0, q)

yt = xt + vt , vt ∼ N(0, r)

* Mechanism may be AR or RW BUT also * AR process is just one
flavor of constraining estimation * Convenience / estimation of q
and r

Gaussian processes for time series
Any of the univariate SS or multivariate models (DFA, MARSS) can
be modified by swapping out an AR latent process for a GP one!
Example: Gaussian process DFA

I Simulated trend via AR process looks like this

Gaussian processes for time series
Using a GP-DFA estimation model, we can see our ability to recover
the process improve from 4 to 10 to 25 knots. 4 knots:

Figure 1:

Gaussian processes for time series
Using a GP-DFA estimation model, we can see our ability to recover
process improve from 4 to 10 to 25 knots. 10 knots:

Figure 2:

Gaussian processes for time series
Using a GP-DFA estimation model, we can see our ability to recover
the process improve from 4 to 10 to 25 knots. 25 knots:

Figure 3:

Neural network time series models

Neural networks widely used in lots of fields. Not widely used in
fisheries with a few examples:

Ward et al. 2014 link Coro et al. 2016 link

I Special applications to time series or data that are sequentially
structured

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1600-0706.2014.00916.x
https://academic.oup.com/icesjms/article/73/10/2552/2647120

Neural network time series models

Some NNet jargon:

I Inputs are predictors (including lagged data)
I Hidden layer are the latent variables / process
I Neurons control dimensionality of hidden layer (a collection of

hidden neurons = hidden layer)
I Output is the predictions vailidated against observable data

Neural network time series models

Neural networks offer an advantage over many approaches we’ve
seen in that they’re non-linear

Example:

I We have a number of predictors for our time series. These are
the inputs

X1, X2, X3

I The neuron takes the inputs, and uses a function f (...) to
generate predictions. f (...) is known as the activation function
and is non-linear (sigmoid, exponential, etc)

Neural network time series models

Just like regression, the nueron estimates coefficients (aka weights)
for each of the predictors.

E [Y] = f (b0 + b1 ∗ X1 + b2 ∗ X2 + b3 ∗ X3)

Note: b0 is sometimes called the bias – but is similar to intercept in
regression

Neural network time series models

Implementation in R

*We’ll talk about examples in 2 packages

I forecast, tsDyn

Neural network time series models

First the forecast package – function nnetar

I This package implements NNet models with autoregression,
where this is defined as lagged values of the response time
series Y

I Rob Hyndman has some great tutorials / vignettes for more
in-depth info. more on nnetar here

https://otexts.com/fpp2/nnetar.html

Neural network time series models
We’ll apply this to daily flow data from the Cedar River

library(waterData)
dat = importDVs(staid = "12119000")
library(lubridate)
dat = dat[which(year(date(dat$dates)) == 2018),]
ggplot(dat, aes(dates,val)) + geom_point() +

ylab("Flow")

500

1000

1500

2000

Jan 2018 Apr 2018 Jul 2018 Oct 2018 Jan 2019

dates

F
lo

w

Neural network time series models

Using the ‘nnetar’ function, there’s several important arguments to
consider

mod = nnetar(y=dat$val, p=..., size=...)

I p represents the embedding dimension or number of lags to
include

I size represents the dimension of the hidden layer (# neurons)

Each of these has defaults, but we’ll do a couple sensitivities

Neural network time series models

First, let’s look at varying the number of lagged predictors

mod_1 = nnetar(y=dat$val, p=1, size=1)
mod_5 = nnetar(y=dat$val, p=5, size=1)
mod_15 = nnetar(y=dat$val, p=15, size=1)

Neural network time series models
Even with embedding dimension = 1, predictions are pretty good

500

1000

1500

2000

Jan 2018 Apr 2018 Jul 2018 Oct 2018 Jan 2019

dates

F
lo

w

Neural network time series models
Only very slight differences here – slight ones in Feb/March for
example

500

1000

1500

2000

Jan 2018 Apr 2018 Jul 2018 Oct 2018 Jan 2019

dates

F
lo

w

Neural network time series models

Ok, now a sensitivity to the size of the hidden layer

mod_1 = nnetar(y=dat$val, p=1, size=1)
mod_5 = nnetar(y=dat$val, p=1, size=5)
mod_15 = nnetar(y=dat$val, p=1, size=15)

Neural network time series models
Again, the fit with 1 neuron looks pretty good

500

1000

1500

2000

Jan 2018 Apr 2018 Jul 2018 Oct 2018 Jan 2019

dates

F
lo

w

Neural network time series models
And there only appear to be slight differences as we add more
neurons

500

1000

1500

2000

Jan 2018 Apr 2018 Jul 2018 Oct 2018 Jan 2019

dates

F
lo

w

Neural network time series models

Selecting the size of the network and number of lags (embedding
dimension) can be tricky. Many estimation routines will do this for
you.

I nnetar will do this for you

For our flow data for example, we can not specify p or size

mod = nnetar(y=dat$val)

Neural network time series models

Output here is as NNAR(p,k) with p equal to the embedding
dimension, and k the hidden nodes

mod

Series: dat$val
Model: NNAR(4,2)
Call: nnetar(y = dat$val)
##
Average of 20 networks, each of which is
a 4-2-1 network with 13 weights
options were - linear output units
##
sigma^2 estimated as 8136

Neural network time series models

Models are trained on 1-step ahead forecasts

I but this can be customized

Weights are randomized from lots of starting values and forecasts
averaged

Point forecasts can be used from the fitted object as before,

f = forecast(mod, h = 10)

Neural network time series models

Alternative estimation routines also exist in ‘tsDyn’ package

nnetTs(x, m, d = 1, steps = d, size)

Just like ‘nnetar’,

I m is embedding dimension
I size is dimension of neural network

Empirical dynamic modeling for time series

Simplex link

S-Map link

Convergent cross-mapping link

Hao Ye’s Vignette link Yair Daon’s Vignette link Owen Petchey’s
Vignette link

https://www.nature.com/articles/344734a0
https://royalsocietypublishing.org/doi/10.1098/rsta.1994.0106
http://science.sciencemag.org/content/338/6106/496
https://cran.r-project.org/web/packages/rEDM/vignettes/rEDM-tutorial.html
https://cran.r-project.org/web/packages/rEDM/vignettes/rEDM-algorithms.pdf
https://www.zora.uzh.ch/id/eprint/129395/1/Simplex_projection_walkthrough.pdf

Empirical dynamic modeling for time series

These tools generally represent nearest neighbor forecasting
(projecting) routines

I Like NNets, there is a lag (embedding dimension) that needs to
be chosen

I Also need to specify the number of nearest neighbors (default
Simplex = E+1)

Empirical dynamic modeling for time series
First, the embedding dimension. We’ll start with a lag / embedding
dimension of E = 5

0 20 40 60 80 100

−
2

−
1

0
1

2

Index

Empirical dynamic modeling for time series
Or we could use a value of E = 3

0 20 40 60 80 100

−
2

−
1

0
1

2

Index

Empirical dynamic modeling for time series

There’s some optimal embedding dimension we can select

I predictions are likely affected strongly by recent dynamics
I it is less likely that conditions in the distant past are also useful

at making projections
I as a result, predictability may increase slightly with greater

values of E and then eventually decline

Empirical dynamic modeling for time series

Internally, forecasts will be made based on the library of predictors

I This library is generated from previous dynamics that mirror
the most recent time period

I Forecasts are then averaged + validated (cross - validation)

0 20 40 60 80 100

−
2

0
1

2

Index

http://deepeco.ucsd.edu/simplex/

http://deepeco.ucsd.edu/simplex/

Empirical dynamic modeling for time series
Examples: let’s start with the classic ‘lynx’ dataset

Time

ly
nx

1820 1840 1860 1880 1900 1920

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

Empirical dynamic modeling for time series

Examples: let’s start with the classic ‘lynx’ dataset

mod = rEDM::simplex(as.numeric(lynx), E=1:10)

Empirical dynamic modeling for time series
Predictability increases a lot when E=2, but pretty flat after

ggplot(mod, aes(E,rho)) + geom_line()

0.65

0.70

0.75

0.80

2.5 5.0 7.5 10.0

E

rh
o

Empirical dynamic modeling for time series
Similar patterns with RMSE

ggplot(mod, aes(E,rmse)) + geom_line()

900

1000

1100

1200

1300

2.5 5.0 7.5 10.0

E

rm
se

Empirical dynamic modeling for time series
We can also pull out predictions (off by default) with the
‘stats_only’ argument,

mod = rEDM::simplex(as.numeric(lynx), E=1:10, stats_only=FALSE)
ggplot(mod[[2]]$model_output, aes(obs, pred)) + geom_point()

0

2000

4000

6000

0 2000 4000 6000

obs

pr
ed

Empirical dynamic modeling for time series

0

2000

4000

6000

0 30 60 90

time

Ly
nx

Empirical dynamic modeling for time series

We can also play with out of sample forecasting by specifiying the
data to be used in the library (‘lib’) and data to be used for
prediction (‘pred’). For example, to forecast the last 14 data points
of the lynx series, we could use

mod = rEDM::simplex(as.numeric(lynx), E=1:10, stats_only=FALSE,
lib=c(1,100), pred=c(101,114))

Empirical dynamic modeling for time series

As a second example, let’s fit this to the water data from the Cedar
River.

mod = rEDM::simplex(dat$val, E=1:10)
ggplot(mod, aes(E,rho)) + geom_line()

0.976

0.978

0.980

0.982

2.5 5.0 7.5 10.0

E

rh
o

Empirical dynamic modeling for time series

For this application, it’s also interesting to maybe compare the
Simplex fits against the neural network time series. Here, the
‘forecast skill’ (rho) is 0.9817 for the best model (E=3).

Fitting the nnet model yields a slightly higher correlation (0.988)

mod_nn = nnetar(y=dat$val)

Empirical dynamic modeling for time series

Beyond Simplex: in the interest of time, we haven’t talked about
SMAP or Cross Mapping

I Smap (rEDM::s_map) is similar to Simplex, but also estimates
a non linear parameter θ

I Cross mapping (rEDM::ccm) models causality in multiple time
series, using information in lags

