Why include covariates in a MARSS model?

- You want to explain correlation in observation errors across sites or auto-correlation in time

Abstract

Auto-correlated observation errors

Model your $\mathrm{v}(\mathrm{t})$ as a AR-1 process
Difficult numerically
Or if know what is causing the autocorrelation, include that as a covariate.

Correlated observation errors across sites (y rows)

Use a R matrix with offdiagonal terms Difficult numerically

Or if know what is causing the correlation, include that as a covariate

Types of covariates

- Numerical
-Continuous (eg, temperature, salinity)
- Discrete (eg, counts)
- Categorical
- Before/After
- North/South -January, February, March, ...

Covariates occur in state, obs or both

State equation
$\mathbf{x}_{t}=\mathbf{B} \mathbf{x}_{t}+\mathbf{u}+\mathbf{C} \mathbf{c}_{t}+\mathbf{w}_{t} \quad \mathbf{w}_{t} \sim \operatorname{MVN}(0, \mathbf{Q})$
(eg, nutrients affects growth, high temps kill)

Observation equation
$\mathbf{y}_{t}=\mathbf{Z} \mathbf{x}_{t}+\mathbf{a}+\mathbf{D d}_{t}+\mathbf{v}_{t} \quad \mathbf{v}_{t} \sim \operatorname{MVN}(0, \mathbf{R})$
(eg, vegetation obscures individuals,
temperature affect behavior making animals visible)

Covariates occur in state, obs or both

State equation

$$
\begin{aligned}
& \mathbf{x}_{t}=\mathbf{B} \mathbf{x}_{t}+\underset{k \text { cols }}{\mathbf{u}+\underset{\mathbf{C c}_{t}}{t}+\mathbf{w}_{t}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { on state } \\
& \mathbf{w}_{t} \sim \operatorname{MVN}(\mathbf{0}, \mathbf{Q}) \\
& \begin{array}{c}
1 \mathrm{col} \\
\sum_{\mathrm{o}}^{\mathrm{o}}[\\
\mathrm{n} \\
\begin{array}{c}
c(t) \text { are the } \\
\text { covariates at time } t
\end{array}
\end{array}
\end{aligned}
$$

m is number of states; k is number of covariates

Covariates occur in state, obs or both

Observation equation
$\mathbf{y}_{t}=\mathbf{Z} \mathbf{x}_{t}+\mathbf{a}+\mathbf{D \mathbf { d } _ { t }}+\mathbf{v}_{t}$
$\mathbf{v}_{t} \sim \operatorname{MVN}(\mathbf{0}, \mathbf{R})$
$\mathbf{D}=\left[\begin{array}{cc} & k \text { cols } \\ \sum_{\substack{n \\ 0 \\ c}} & \\ \substack{\text { Dis the effect of cov } \\ \text { on state }}\end{array}\right]$

n is number of obs; k is number of covariates

Covariate effects can differ or not

$$
\begin{gathered}
\text { Different effects } \\
\mathbf{C}=\left[\begin{array}{cc}
C_{P, 1} & C_{N, 1} \\
C_{P, 2} & C_{N, 2} \\
C_{P, 3} & C_{N, 3}
\end{array}\right] \quad \mathbf{C}=\left[\begin{array}{cc}
C_{P} & C_{N} \\
C_{P} & C_{N} \\
C_{P} & C_{N}
\end{array}\right] \\
\mathbf{c}_{t}=\left[\begin{array}{c}
\text { Precipitation } \\
\text { Nitrogen }
\end{array}\right]_{t}
\end{gathered}
$$

Covariates can be seasons or periods

State equation
$\mathbf{x}_{t}=\mathbf{B} \mathbf{x}_{t}+\mathbf{u}+\mathbf{C} \mathbf{c}_{t}+\mathbf{w}_{t}$

$$
\mathbf{w}_{t} \sim \operatorname{MVN}(\mathbf{0}, \mathbf{Q})
$$

Observation equation
$\mathbf{y}_{t}=\mathbf{Z} \mathbf{x}_{t}+\mathbf{a}+\mathbf{D d}_{t}+\mathbf{v}_{t} \quad \mathbf{v}_{t} \sim \operatorname{MVN}(\mathbf{0}, \mathbf{R})$

$$
\mathbf{v}_{t} \sim \operatorname{MVN}(\mathbf{0}, \mathbf{R})
$$

Seasonal or periodical effects

For example, effects of "season" on 3 states (3 rows)

$$
\left[\begin{array}{llll}
C_{1} & C_{2} & C_{3} & C_{4} \\
C_{1} & C_{2} & C_{3} & C_{4} \\
C_{1} & C_{2} & C_{3} & C_{4}
\end{array}\right]\left[\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & \ldots & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & \ldots & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & \ldots & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & \ldots & 0 & 0 & 0 & 1
\end{array}\right]
$$

Seasonal or periodical effects

For example, effects of "season" on 3 states

Seasonal or periodical effects

For example, effects of "season" on 3 states

Non-factor seasons or periods

Treating season as a factor means we have a parameter for each 'season'. 4 in the previous example. What if the factor were 'month'? Then we'd have 12 parameters!

- We can also estimate "season" via a nonlinear model
- Two common options:

1) Cubic polynomial
2) Fourier frequency

Season as a polynomial

$$
\mathbf{x}_{t}=\mathbf{B} \mathbf{x}_{t}+\mathbf{u}+\mathbf{C} \mathbf{c}_{t}+\mathbf{w}_{t} \quad \mathbf{w}_{t} \sim \operatorname{MVN}(\mathbf{0}, \mathbf{Q})
$$

For months: $\mathbf{C} \mathbf{c}_{t}=b_{1} m_{t}+b_{2} m_{t}^{2}+b_{3} m_{t}^{3}$

$$
\left.\left[\begin{array}{ccc}
C_{1} & C_{2} & C_{3} \\
C_{1} & C_{2} & C_{3} \\
C_{1} & C_{2} & C_{3}
\end{array}\right] \underset{\mathrm{t}=1}{ } 2_{2} 3^{[\ldots . .} ⿻ \begin{array}{ccccc}
1 & 2 & 3 & \ldots & 12 \\
1 & 4 & 9 & \ldots & 144 \\
1 & 8 & 27 & \ldots & 1728
\end{array}\right] \begin{gathered}
\mathrm{m} \\
\mathrm{~m}^{2} \\
\mathrm{~m}^{3}
\end{gathered}
$$

Season as a Fourier series

- Fourier series are paired sets of sine and cosine waves
- They are commonly used in time series analysis in the frequency domain (which we will not cover here)

Season as a Fourier series

$$
\mathbf{x}_{t}=\mathbf{B} \mathbf{x}_{t}+\mathbf{u}+\mathbf{C} \mathbf{c}_{t}+\mathbf{w}_{t} \quad \mathbf{w}_{t} \sim \operatorname{MVN}(\mathbf{0}, \mathbf{Q})
$$

Our new covariates at time t

$$
\mathbf{C} \mathbf{c}_{t}=C_{1} \sin (2 \pi t / p)+C_{2} \cos (2 \pi t / p)
$$

$$
\left[\begin{array}{ll}
C_{1} & C_{2} \\
C_{1} & C_{2} \\
C_{1} & C_{2}
\end{array}\right]\left[\begin{array}{l}
\sin \left(\frac{2 \pi t}{p}\right) \\
\left.\cos \left(\frac{2 \pi t}{p}\right)\right]_{t}
\end{array}\right.
$$

t is time step ($1,2,3, \ldots$, number of data points)
p is period (e.g., 12 months per year so $p=12$)

Feb $7^{\text {th }}$ Forecasting with Exponential Smoothing Models

- We'll talk about modeling time-varying seasonal effects at that time.
- Exponential smoothing models are related to Dynamic Linear Models, which Mark will cover in Week 5

Decomposition by ETS(A,N,A) method

Dealing with missing covariates

- Drop years / shorten time series to remove missing values
- Interpolate missing values
- Develop process model for the covariates
- Allows us to incorporate observation error into the covariates (known or unknown)
- Allows us to interpolate but NOT treat that interpolated value as known. It is an estimated value that has uncertainty.

Dealing with missing covariates

$$
\begin{aligned}
& {\left[\begin{array}{l}
\mathbf{x}^{(v)} \\
\mathbf{x}^{(c)}
\end{array}\right]_{t}=\left[\begin{array}{cc}
\mathbf{B}^{(v)} & \mathbf{C} \\
0 & \mathbf{B}^{(c)}
\end{array}\right]\left[\begin{array}{l}
\mathbf{x}^{(v)} \\
\mathbf{x}^{(c)}
\end{array}\right]_{t-1}+\left[\begin{array}{l}
\mathbf{u}^{(v)} \\
\mathbf{u}^{(c)}
\end{array}\right]+\mathbf{w}_{t},} \\
& \mathbf{w}_{t} \sim \operatorname{MVN}\left(0,\left[\begin{array}{cc}
\mathbf{Q}^{(v)} & 0 \\
0 & \mathbf{Q}^{(c)}
\end{array}\right]\right) \\
& {\left[\begin{array}{l}
\mathbf{y}^{(v)} \\
\mathbf{y}^{(c)}
\end{array}\right]_{t}=\left[\begin{array}{cc}
\mathbf{Z}^{(v)} & \mathbf{D} \\
0 & \mathbf{Z}^{(c)}
\end{array}\right]\left[\begin{array}{l}
\mathbf{x}^{(v)} \\
\mathbf{x}^{(c)}
\end{array}\right]_{t}+\left[\begin{array}{l}
\mathbf{a}^{(v)} \\
\mathbf{a}^{(c)}
\end{array}\right]+\mathbf{v}_{t}} \\
& \mathbf{v}_{t} \sim \operatorname{MVN}\left(0,\left[\begin{array}{cc}
\mathbf{R}^{(v)} & 0 \\
0 & \mathbf{R}^{(c)}
\end{array}\right]\right) \\
& \text { (v) are the variates (data) } \\
& \text { (c) are the covariates }
\end{aligned}
$$

Dealing with missing covariates

$$
\begin{gathered}
\mathbf{x}_{t}=\mathbf{B} \mathbf{x}_{t-1}+\mathbf{u}+\mathbf{w}_{t}, \text { where } \mathbf{w}_{t} \sim \operatorname{MVN}(0, \mathbf{Q}) \\
\mathbf{y}_{t}=\mathbf{Z} \mathbf{x}_{t}+\mathbf{a}+\mathbf{v}_{t}, \text { where } \mathbf{v}_{t} \sim \operatorname{MVN}(0, \mathbf{R})
\end{gathered}
$$

$$
\begin{array}{lll}
\mathbf{x}=\left[\begin{array}{l}
\mathbf{x}^{(v)} \\
\mathbf{x}^{(c)}
\end{array}\right] & \mathbf{B}=\left[\begin{array}{cc}
\mathbf{B}^{(v)} & \mathbf{C} \\
0 & \mathbf{B}^{(c)}
\end{array}\right] & \mathbf{u}=\left[\begin{array}{l}
\mathbf{u}^{(v)} \\
\mathbf{u}^{(c)}
\end{array}\right]
\end{array} \quad \mathbf{Q}=\left[\begin{array}{cc}
\mathbf{Q}^{(v)} & 0 \\
0 & \mathbf{Q}^{(c)}
\end{array}\right]
$$

See Holmes, Ward and Scheuerell (2018) "MARSS User Guide" for a discussion and example of how to do this.

Example: You measure temperature in 2 locations with one location having 2 different sensors. You want a composite of those. You have missing values.

$$
\begin{gathered}
x_{t}=b x_{t-1}+w_{t} \\
{\left[\begin{array}{l}
T_{1} \\
T_{2} \\
T_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] x_{t}+\left[\begin{array}{c}
0 \\
a_{2} \\
a_{2}
\end{array}\right]+\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]} \\
\mathrm{R}=\left[\begin{array}{lll}
b & 0 & 0 \\
0 & \sigma & c \\
0 & c & \varphi
\end{array}\right]
\end{gathered}
$$

Dealing with missing covariates

- You may want to fit the covariate model separately so that fit to the process is not driven by the fit to the covariates.
- Then fix the parameters of the covariate part of the model when fitting.
- Why not use the estimated state as your 'covariate'?
- You can, but then uncertainty in the covariate doesn't propagate into your fit uncertainty.

Topics for the computer lab

- Fitting multivariate state-space models with covariates
- Seasonal effects
- Fitting candidate model sets

