
Why include covariates in a MARSS 
model?

• You want to explain correlation in observation errors across 
sites or auto-correlation in time

Auto-correlated 
observation errors

Model your v(t) as a 
AR-1 process
Difficult numerically

Or if know what is 
causing the auto-
correlation, include that 
as a covariate.

Correlated 
observation errors 
across sites (y rows)

Use a R matrix with off-
diagonal terms
Difficult numerically

Or if know what is 
causing the correlation, 
include that as a 
covariate



Types of covariates

•Numerical
o Continuous (eg, temperature, 

salinity)
o Discrete (eg, counts)
•Categorical
o Before/After
o North/South
o January, February, March, …



Covariates occur in state, obs or both

),0(MVN~ Qw t

State equation

yt =Zxt + a+Ddt + vt
Observation equation

xt = Bxt +u+Cct +wt

(eg, nutrients affects growth, high temps kill)

(eg, vegetation obscures individuals,
temperature affect behavior making animals visible)

),0(MVN~ Rv t



Covariates occur in state, obs or both

wt ∼MVN 0,Q( )
State equation

xt = Bxt +u+Cct +wt
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m is number of states; k is number of covariates

C is the effect of cov
on state

c(t) are the 
covariates at time t
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Covariates occur in state, obs or both
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n is number of obs; k is number of covariates

yt =Zxt + a+Ddt + vt vt ∼MVN 0,R( )
Observation equation

D is the effect of cov
on state

d(t) are the 
covariates at time t



Covariate effects can differ or not

Different effects

C =
CP,1 CN ,1

CP,2 CN ,2

CP,3 CN ,3
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Covariates can be seasons or periods

wt ∼MVN 0,Q( )
State equation

yt =Zxt + a+Ddt + vt vt ∼MVN 0,R( )
Observation equation

xt = Bxt +u+Cct +wt
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Seasonal or periodical effects

For example, effects of “season” on 3 states (3 rows)
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1 0 0 0 ... 1 0 0 0
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Seasonal or periodical effects

For example, effects of “season” on 3 states 

ct



1 0 0 0 ... 1 0 0 0
0 1 0 0 ... 0 1 0 0
0 0 1 0 ... 0 0 1 0
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Seasonal or periodical effects

For example, effects of “season” on 3 states 

ct+1



Non-factor seasons or periods

Treating season as a factor means we have a parameter 
for each ‘season’.  4 in the previous example.  What if the 
factor were ‘month’?  Then we’d have 12 parameters!

• We can also estimate “season” via a nonlinear model

• Two common options:

1) Cubic polynomial

2) Fourier frequency



Season as a polynomial

1 2 3 ... 12
1 4 9 ... 144
1 8 27 ... 1728
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wt ∼MVN 0,Q( )

For months:

xt = Bxt +u+Cct +wt

Cct = b1mt + b2mt
2 + b3mt
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Season as a Fourier series

• Fourier series are paired sets of sine and cosine waves

• They are commonly used in time series analysis in the 
frequency domain (which we will not cover here)



Season as a Fourier series
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wt ∼MVN 0,Q( )xt = Bxt +u+Cct +wt

Cct = C1sin(2pt/p) + C2cos(2pt/p)

t is time step (1, 2, 3, ... , number of data points)
p is period (e.g., 12 months per year so p=12)
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Our new covariates at time t



Feb 7th Forecasting with Exponential Smoothing 
Models

• We’ll talk about modeling time-varying seasonal effects at 
that time.

• Exponential smoothing models are related to Dynamic 
Linear Models, which Mark will cover in Week 5



Dealing with missing covariates

• Drop years / shorten time series to remove 
missing values

• Interpolate missing values
• Develop process model for the covariates
– Allows us to incorporate observation error 

into the covariates (known or unknown)
– Allows us to interpolate but NOT treat that 

interpolated value as known.  It is an 
estimated value that has uncertainty.



Dealing with missing covariates

(v) are the variates (data)
(c) are the covariates



Dealing with missing covariates

See Holmes, Ward and Scheuerell (2018) “MARSS User Guide” for 

a discussion and example of how to do this.
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Example: You measure temperature in 2 locations with one 
location having 2 different sensors. You want a composite of 

those.  You have missing values.



Dealing with missing covariates

• You may want to fit the covariate model 
separately so that fit to the process is not driven 
by the fit to the covariates.

• Then fix the parameters of the covariate part of
the model when fitting.

• Why not use the estimated state as your 
‘covariate’?
– You can, but then uncertainty in the covariate doesn’t 

propagate into your fit uncertainty.



Topics for the computer lab

• Fitting multivariate state-space models 
with covariates
– Seasonal effects

• Fitting candidate model sets


