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Overview of today’s material

I Gentle introduction to HMMs

I Theory and notation

I Examples of univariate HMMs in R

I Examples of multivariate HMMs in R



Overview of today’s material

For additional background, see

I Zucchini et al. (2008, 2016) “Hidden Markov Models for Time
Series: An Introduction Using R”

I Jackson (2011) “Multi-State Models for Panel Data: The msm
Package for R”

I Visser and Speekenbrink (2010) “depmixS4: An R Package for
Hidden Markov Models”



State space models

We’ve already discussed state space models. These models include

I a latent process model (we don’t directly observe)

I a data or observation model (we’ve generally assumed this to
be normal or multivariate normal)



State space models

Process model:
xt = xt−1 + εt−1

Observation model:
yt = xt + δt

where εt ∼ Normal (0, σε) and δt ∼ Normal (0, σδ)



State space models

Adding AR coefficients can make these models stationary with
respect to the mean,

xt = p · x t−1 + εt−1

however they may not be able to explain some datasets very well.

I Specifically, these models are not well designed to model
regimes



Regimes

Many examples of time series in ecology & fisheries may alternate
between multiple states (2+)

I Vert-pre et al. (2013)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3562848/

I Francis et al. (2012)
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-
2486.2012.02702.x

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3562848/
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2486.2012.02702.x
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2486.2012.02702.x


Regimes

Lots of non-HMM approaches for detecting regimes

I STARS algorithm
I Sequential t-test approach for detecting changes in the mean
I Rodionov (2015) https://www.mdpi.com/2225-1154/3/3/474

I Brute force model selection approach
I iterate through change points, evaluating data support for each
I how do we do change points with regression? Yt = BXt + εt

https://www.mdpi.com/2225-1154/3/3/474


Regimes: simulating data
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Limitations of state space models
They can actually fit the data from a regime model quite well.

I Via MARSS,

0 20 40 60 80 100

0
1

2
3

4

Time

S
im

ul
at

ed
 d

at
a



Limitations of state space models

What’s lacking is inference about:

I What’s the probability of transition between regimes?
I How long are regimes expected to last?
I What regimes might we expect in the future?

Lots of applications: speech recognition, bioinformatics, animal
movement, environmental data (rain), finance



HMM: theory

Markov Process

I time may be discrete or continuous (we’ll focus on discrete)
I Markov if at each time step, the state xt is only dependent on

the previous state xt−1
I xt does not depend on future values

Entire history can be written as

{x1, x2, x3, ..., xT}



HMM: theory

A key piece of the Markov process are the transition probabilities.

I The probability of transitioning from state j to i given the
current state is

P (xt+1 = j |xt = i) = γij

And then these probabilities can be summarized in a transition
matrix,

Γ =

γ11 γ12 γ13
γ21 γ22 γ23
γ31 γ32 γ33





HMM theory

Matrix Γ is the 1-step transitions. However k-step transition
probabilities can be generated,

Γ(k) = Γk

I From this, we can also calculate the stationary distribution of
the chain
I See Zucchini et al. (2006) Chapter 2



HMM theory

There are two general flavours of transition matrices:

I Homogenous (or stationary)
I transition probabilities don’t depend on t

I Non-homogeneous
I transition probabilities are time-varying

I In this class, we’ll only consider homogeneous cases



HMM theory

Covariates may enter HMMs in one of two ways

I Effects on the mean

I Effects on the transition matrix Γ

I For effects on Γ, probabilities are constrained (0,1) and
constrained to sum to 1
I multivariate logit regression used to relate covariates to

elements of Γ
I reference / base case is fixed at zero (Agresti 2002)



HMM: theory

I Observations: observable data Yi=1,...,N

I States: latent (discrete) variables that are not directly observed
I xt=1,...,T
I N is the number of states possible

I Transition probabilities: transition matrix representing the
probability of transitioning between states in the Markov chain
I Γ and γij

I Emission probabilities: how likely the states are at any
particular timestep
I θi=1,...,N



HMM: theory

One quantity of interest from HMMs is the marginal distribution,
P(Yt)

Output from the model will give us the conditional distribution,
P(Yt |xt = i). But we need to marginalize over all possible states

Solution:

P(Yt) =
N∑

i=1
P(xt = i)P(Yt |xt = i)

which can also be expressed as

P(Yt) =
N∑

i=1
δiP(Yt |xt = i)

where δ represents the stationary distribution (Zucchini et al. 2006)



HMM: theory

Estimation of HMM parameters can be quite complicated

Dealing with joint likelihood of observed data and unobserved states

P(x ,Y ) =
T∏

i=1
P(xt |xt−1)P(Yt |xt)



HMM: theory

Estimation most commonly done with maximum likelihood

1. Forward-backward algorithm: calculate probability of observed
data sequence

2. Viterbi algorithm: used to generate most likely states
3. EM-algorithm: estimate / update parameters

I For forward-backward algorithm we can factor conditional state
probabilties as follows

P (xt |Y1:T ) = P(xt |Y1:t ,Yt+1:T ) = P(xt |Y1:t)P(Yt+1:T |xt)

* Probability of state given the data is the probability of the state
given the data up to that time step multiplied by the probability of
future data



HMM: theory

Forward-backward algorithm has 3 steps (sometimes 2/3 combined):

1. Forward probabilities

I from the last slide, this step calculates P(xt |Y1:t

2. Backward probabilities

I from the last slide, this step calculates P(Yt+1:T |xt)

3. Smoothing

I compute marginal likelihood of sequence of state variables
P(xt |Y )



Examples of univariate HMMs in R
As a first example, let’s use an example of rainfall data in Seattle
from the end of 2018 and beginning of 2019 (accessed from
wunderground.com)
rain = read.csv("seattle_rain.csv")
ggplot(rain, aes(Time, Rainfall)) + geom_line() +

xlab("Days since Nov 1") + ylab("Precip (in)")
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Examples of univariate HMMs in R
We could model rainfall directly, but for starters let’s just model
whether or not it rained on a given day (0/1).
rain$rained = ifelse(rain$Rainfall > 0, 1, 0)
ggplot(rain, aes(Time, rained)) + geom_line() +

xlab("Days since Nov 1") + ylab("Rained?")
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Examples of univariate HMMs in R

Questions that we might be interested in:

I Conditional probabilities
I What’s the probability of it raining tomorrow given that it’s

raining today?
I What’s the probability of it raining tomorrow given that it’s not

today?
I Persistence

I On average, how long might we expect to go without rain?



Examples of univariate HMMs in R

We don’t really need HMMs to address these questions

I daily rainfall may be measured with a tiny amount of
uncertainty

I probably safe to say that there’s almost no uncertainty in
whether or not it rained on a given day



Examples of univariate HMMs in R

Transition probabilities can be just calculated directly,

I P(raint+1|raint)

#consecutive rainy days
#rainy days

For example, we can create a differenced variable to indicate no
change (0), and compute
rain$diff = c(diff(rain$rained), NA)
p_rain_rain = length(which(rain$diff == 0 & rain$rained==1)) /

length(which(rain$rained==1))



Examples of univariate HMMs in R

Ok, now let’s assume that there’s some minor observation or
measurement error in the rain gauge data. For this case, it’s best to
use a HMM.

Let’s start with using the R package depmixS4. There’s a good
vignette on the package that you can refer back to,

https://cran.r-
project.org/web/packages/depmixS4/vignettes/depmixS4.pdf

https://cran.r-project.org/web/packages/depmixS4/vignettes/depmixS4.pdf
https://cran.r-project.org/web/packages/depmixS4/vignettes/depmixS4.pdf


Examples of univariate HMMs in R

There’s two functions we’ll use to set up the HMM with depmixS4.

First we’ll structure the model using the same formula notation
you’re hopefully familiar with,
mod = depmix(rained ~ 1,

nstates = 2,
transition = ~ 1,
family = binomial(),
data=rain)



Examples of univariate HMMs in R

Stepping through this rained is our response (yes / no)
mod = depmix(rained ~ 1,

nstates = 2,
transition = ~ 1,
family = binomial(),
data=rain)



Examples of univariate HMMs in R

nstates is the number of alternative states (> 2), specified a priori
mod = depmix(rained ~ 1,

nstates = 2,
transition = ~ 1,
family = binomial(),
data=rain)



Examples of univariate HMMs in R

transition is a formula to specify whether any covariates are to
be included in the transition probabilities. The default is no
covariates, and that these transitions aren’t time varying.
mod = depmix(rained ~ 1,

nstates = 2,
transition = ~ 1,
family = binomial(),
data=rain)



Examples of univariate HMMs in R

family is family or list of families (a list for multiple response
variables) of the families associated with each response. The
majority of common families are supported
mod = depmix(rained ~ 1,

nstates = 2,
transition = ~ 1,
family = binomial(),
data=rain)

For a complete list, see
?depmixS4::GLMresponse



Examples of univariate HMMs in R
Ok, now that we’ve set up the model, we can do the estimation
set.seed(123)
fitmod = fit(mod)

and look at the output
summary(fitmod)

## Initial state probabilties model
## pr1 pr2
## 1 0
##
## Transition matrix
## toS1 toS2
## fromS1 0.773 0.227
## fromS2 0.410 0.590
##
## Response parameters
## Resp 1 : binomial
## Re1.(Intercept)
## St1 2.087
## St2 -29.863



Examples of univariate HMMs in R
As a warning, note that the results from the estimation are a bit
sensitive to the initial seed. Look at how much the transition
probabilties change,
set.seed(121)
fitmod = fit(mod)

summary(fitmod)

## Initial state probabilties model
## pr1 pr2
## 0 1
##
## Transition matrix
## toS1 toS2
## fromS1 0.590 0.410
## fromS2 0.227 0.773
##
## Response parameters
## Resp 1 : binomial
## Re1.(Intercept)
## St1 -29.807
## St2 2.087



Examples of univariate HMMs in R

There’s a couple practical ways to try to overcome this seed issue.

I First, we can change the control parameters

Unfortunately for this example, this doesn’t solve the issue



Examples of univariate HMMs in R

I A second option is to run the estimation across a large number
(> 100) of random starting values

Pseudocode:
best = 1.0e10
best_model = NA
for(i in 1:iter) {

# fit the model
fitmod = fit(mod)

# check to see if this is the best solution?
if(AIC(fitmod) < best) {

best_model = fitmod
best = AIC(fitmod)

}
}



Examples of univariate HMMs in R

Let’s move on to a more complex example.

We’ll pull some data from the CalCOFI ichthyoplankton cruises in
Southern California. Some species have been used to indicate cool
versus warm regimes.

I http://calcofi.org/publications/calcofireports/v58/Vol58-
State_of_the_Current_pages_1-55.pdf

For this example, we’ll focus on the California smoothtongue
(Leuroglossus stilbius)

http://calcofi.org/publications/calcofireports/v58/Vol58-State_of_the_Current_pages_1-55.pdf
http://calcofi.org/publications/calcofireports/v58/Vol58-State_of_the_Current_pages_1-55.pdf


Examples of univariate HMMs in R
Caveat: the survey is spatially gridded, and you’d want to perform
index standardization or use spatial models to generate indices. For
simplicty, we’re just taking the mean abundance across stations in
April-May.
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Examples of univariate HMMs in R

We’ll start with fitting a 2-state model with depmix. Assumptions:

I Model fit to ln transformed data, assumed Gaussian
set.seed(123)
calcofi$ln = log(calcofi$m)
mod = depmix(ln ~ 1,

nstates = 2,
data=calcofi)

fitmod = fit(mod)



Examples of univariate HMMs in R

First let’s look at how to get predictions out of a depmix.fitted
object

We’ll start with the state probabilities. Remember we could work
with either

I Most probable state trajectory - via the viterbi function
I Marginals of P(xt) - via the posterior function



Examples of univariate HMMs in R
The most probable states are
prstates = apply(posterior(fitmod)[,c("S1","S2")],

1, which.max)

plot(prstates, type="b", xlab="Time", ylab="State")
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Examples of univariate HMMs in R
depmixS4 doesn’t have a predict() or forecast() function, but
creating estimated data is pretty straightforward. We can get the
means out with
mu = summary(fitmod)[,1]

pred = data.frame("year"=seq(min(calcofi$year), max(calcofi$year)),
"fit" = mu[prstates])
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Examples of univariate HMMs in R

Some diagnostics (like autocorrelation) may not look great. What if
we compared the previous model to one with 3 states? AIC from the
2-state model was

## [1] 118.994

set.seed(123)
calcofi$ln = log(calcofi$m)
mod = depmix(ln ~ 1,

nstates = 3,
data=calcofi)

fitmod = fit(mod)

This seems like increasing the states doesn’t result in lower AIC

## [1] 122.5181



Examples of multivariate HMMs in R

If the univariate examples make sense, it’s not that different to
extend these models for multiple time series.

In this setting, the assumption is that the latent state process is the
same for all time series, though the time series may differ

1. their lengths
2. their error distributions



Examples of multivariate HMMs in R
In depmix, these arguments generally become lists

We’ll extend our CalCOFI example to include 2 species now
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Examples of multivariate HMMs in R

Fitting a 2-state model with 2 species as responses. First we have
to reshape the data,
calcofi$ln = log(calcofi$m) # ln transform
calcofi <- dcast(melt(calcofi[,c("year","ln","species")],

id.vars = c("year", "species")),
year ~ species)

names(calcofi)[2:3] = c("L_stilbius","L_ochotensis")
head(calcofi)

## year L_stilbius L_ochotensis
## 1 1980 0.85449030 -0.8414039
## 2 1981 3.13964169 1.6941728
## 3 1982 3.70359056 3.5435378
## 4 1983 -0.03344793 0.4947281
## 5 1984 3.00082695 2.4346651
## 6 1985 0.24911445 -0.8471716



Examples of multivariate HMMs in R

set.seed(123)
mod = depmix(list(L_stilbius ~ 1, L_ochotensis~1),

nstates = 2,
family = list(gaussian(),gaussian()),
data=calcofi)

fitmod = fit(mod)



Examples of multivariate HMMs in R

We could also have situations where the time series are of different
length.

I For example, if L_ochotensis time series was missing first half
of values

I The argument ntimes is a list that becomes particularly
valuable here - representing the length of each time series



Summary

HMMs are a useful approach at identifying latent state vectors that
undergo discrete transitions

Estimation of HMMs for time series in R generally done with ML
methods

I Fast, but these algorithms may get stuck
I Robust solutions = multiple starting values

Bayesian estimation generally beyond the scope of this class

I Very straightforward to build these models in BUGS/JAGS
I More complicated with newer sofware (Stan)


