Dynamic Factor Analysis
FISH 507 - Applied Time Series Analysis

Mark Scheuerell
31Jan 2019



Topics for today

Deterministic vs stochastic elements
Regression with autocorrelated errors
Regression with temporal random effects
Dynamic Factor Analysis (DFA)

Forms of covariance matrix
- Constraints for model fitting

Interpretation of results
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A very simple model

Consider this simple model, consisting of a mean u plus error

y; =y + e; with e; ~ N(0, 6?)

3/73



A very simple model

The right-hand side of the equation is composed of deterministic and
stochastic pieces

yi = M + e

—— ——
deterministic  stochastic
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A very simple model

Sometime these pieces are referred to as fixed and random

yi= g+ e

ﬁ;gd random
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A very simple model

This can also be seen by rewriting the model|
vi = i+ e; with e¢; ~ N(O, 62)
as

yi ~ N(u,0%)
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Simple linear regression

We can expand the deterministic part of the model, as with linear
regression

Vi = a+ fPx; +e; with e; ~ N(O, c?)

mean

SO

Vi ~ N(a +ﬂxi, 62)
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A simple time series model

Consider a simple model with a mean u plus white noise

Vi = h+ e with ¢; ~ N(0,02)
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Time series model with covariates

We can expand the deterministic part of the model, as before with
linear regression

vi = a+ Px; + e with e, ~ N(O, 02)

mean

SO

Ve ~ N((x +ﬂxt,02)
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Example of linear model

Yi=T1+ 55X+ €

Xt Or Y

Xt

Time
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Model residuals

ey

Time

These do not look like white noise!
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ACF of model residuals
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There is significant autocorrelation at lag = 1
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Model with autocorrelated errors

We can expand the stochastic part of the model to have autocorrelated
errors

yi =a+ px; + e
er = ¢er—1 +wy

with w; ~ N(0,6?)
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Model with autocorrelated errors

We can expand the stochastic part of the model to have autocorrelated
errors

yi =a+ px; + e
er = ¢er—1 +wy

with w; ~ N(0,6?)

We can write this model as our standard state-space model
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State-space model

Observation equation

ye = a+ Px; + e
=e +a+ fx

2
Vi =xt+a+Ddt+V;

with

xx=e,a=a,D=pd =x;, v =0
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State-space model

State equation

€ — ¢€t_1 + Wy

xX; = Bx; + w;
with

x; =¢and B = ¢
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State-space model

Full form

Vi =a+ fx; + e
er = ¢er—1 +w;
J
yi = a+ Dd; + x;
X: = Bx; +w;
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State-space model

Observation model in MARSS ()

= data

= matrix("a")
= matrix("D")
= covariate
= matrix(1)

WON QO 9 K
|

= matrix(0)

yt =a+Ddt+x[

U
v = Zxy +a+ Dd; + vy

## [1 x T] matrix of data

## intercept

## slope

# [1 x T] matrix of measured covariate
## no multiplier on x

# v t ~ N(O,R); want y t = 0 for all t
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State-space model

State model in MARSS ()

xX; = Bx; +wy

\
X =Bx,+u+ Cc, +w,

B = matrix("b") ## AR(1l) coefficient for model errors
Q0 = matrix("qg") ## w t ~ N(0,Q); var for model errors
u = matrix(0) # u=0

C = matrix(0) # C =0

c = matrix(0) # c t =0 for all t
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MORE RANDOM EFFECTS
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Expanding the random effect

Recall our simple model

YVi= U+ e

ﬁ;gd random
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Expanding the random effect

We can expand the random portion

vi=pu + fite

fixed random

€r ~ N(O, 0)
Je ~ N(fi-1,7)
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Expanding the random effect

We can expand the random portion

vi=pu + fite

fixed random

€y ~ Pq((),CT)
Je ~ N(fi-1,7)

This is simply a random walk observed with error
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Random walk observed with error

ve = U+ f; + e; with e; ~ N(0, o)
fi = fi-1 + wr with w; ~ N(O, y)
U
vi = a+ x; + v with v, ~ N(O,R)
x; = x;—1 + w; with w, ~ N(0, Q)
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Expanding fixed & random effects

We can expand the fixed portion

vi=a+px; + fi+e

fixed random

€r ~ Pq((),CT)
Je ~ N(fi-1,7)
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Fixed & random effects

In familiar state-space form

vi = a+ px; + f; + e; with e, ~ N(0, o)
ft = fi—-1 + wy with w; ~ N(O, y)
J
vt = a+ Dd; + x; + v; with v ~ N(0O, R)
X; = X1 +w; with w, ~ N(O, Q)
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MULTIPLE TIME SERIES
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Simple model for 2+ time series

Random walk observed with error

Vit = Xir +a; +Vi;
Xit = Xit—1 T Wiy
with
vir ~ N(O,R)

Wit ~ N(O’ Q)
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Random walk observed with error

Vig = X1+ ap + vy
Vor =Xprtax+ vy

Vot = Xnt + a2 + Vg

X1t = X1t=1 T Wiy
X2 = X2t—1 T+ W2y

Xnt = Xnt—1 + Wnyt
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Random walk observed with error

In matrix form

yt=X;+a+Vt
X; = Xy—1 + Wy

with
v, ~ MVN(0, R)

w; ~ MVN(0,Q)
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Environmental time series

We often observe covariance among environmental time series,
especially for those close to one another
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Common patterns in time series

N

-

34/73



State-space model

Ex: population structure

yt =ZX;+a+Vt
X = Xi—1 T W
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State-space model

Ex: Harbor seal population structure

Y1
Y2
Y3
Y4
| Y5

oo O O =

S O = o= O

—1

Vi

V2

V4

Vs
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Finding common patterns

What if our observations were instead a mixture of 2+ states?

For example, we sampled haul-outs located between several breeding
sites
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Mixtures of states

V1 08 02 O ai 1
Vs 02 07 017 [x7] a v
vi| =10 09 O01|Xjxy i t+|la|+]|w
V4 0 0.3 0.7 | XS s ag V4
vs), L O 01 09] las | |vs |,
ur | [ar ] [ wyr |
XN — 1 XN + WnN

| XS ¢ | XS 141 | Ws s
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Finding common patterns

What if our observations were a mixture of states, but we didn't know
how many or the weightings?

y, =Zx;,+a+vV,
Xy — Xr—1 +W[

What are the dimensions of Z?

What are the elements within Z?
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Dynamic Factor Analysis (DFA)

DFA is a dimension reduction technique, which models n observed time
series as a function of m hidden states (patterns), where n > m
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Dynamic Factor Analysis (DFA)

State-space form
yt — ZX; + a -+ V;
X = X¢—1 + W
data:y, isnx1
loadings: Z is n x m with n > m

states: x, ism x 1
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Dimension reduction
Principal Components Analysis (PCA)

Goal is to reduce some large number of correlated variates into a few
uncorrelated factors
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Principal Components Analysis (PCA)

Calculating the principal components requires us to estimate the
covariance of the data

PC = eigenvectors(cov(y))

There will be n principal components (eigenvectors) for an n x T matrix
y

We reduce the dimension by selecting a subset of the components that
explain much of the variance (eg, the first 2)

43/73



Principal Components Analysis (PCA)

p=0.73
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Principal Components Analysis (PCA)

4
o ™
°
® °
2 - e
... ® ° PO )
PC1 °
° ® 3 .:. 'Y
o0
> 0 ® L ° ™
. ()
] e @ :
o0 ®ee o e PC2
°
' 4 P
2 - S °
I [ [ | |
2 1 0 1 2
X

45/73



Principal Components Analysis (PCA)

PC2
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Relationship between PCA & DFA

We need to estimate the covariance in the data y
y, = Zx; +a+v,, withv, ~ MVN(0,R)
SO
cov(y,) = Zcov(x,)Z' + R

In PCA, we require R to be diagonal, but not so in DFA
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Principal Components Analysis (PCA)

Forms for R withn = 4

(6 0 0 O] si 0 0 0
R;anoorR;O@OO
0 0 ¢ O 0 0 o3 O
0 0 0 o 0 0 0 o4
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Dynamic Factor Analysis (DFA)

Forms for R withn = 4

c O 0 O cr O O O
R; 0O o 0 O orR; O oo 0 O
0O 0 o O 0O O o3 O
0 0 O o 0 0 0 o4
(6 v v 7] K7 0 0 0 |
RL|7 77 TlgR2|® @ O ru
Yy o y 0 0 o3 0
Yy v v o 0 y24 0 o4
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Dynamic Factor Analysis (DFA)

What form should we use for Z?

<1
22
<3
<4

<5

?
or Z. =

y, =Zx;,+a+vV,
Xy — Xr—1 +Wt

21,1
21,2
21,3
21,4
21,5

2.1
22
2.3
22,4
22,5

?
or Z. =

21,1
21,2
21,3
21,4

<1,5

2.1
22
2.3
2.4
22,5

<3,1
<32
<33
3.4
<3,5
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Dynamic Factor Analysis (DFA)

y, =Zx;,+a+vV,
Xy — Xr—1 + W;

What form should we use for Z.?

21 <1,1 2,1 <1,1 2,1 <3,1
22 <12 222 <12 <22 132

? ?
zlorZ=|l23 23|orZ=|\7213 223 33

| 35 Zln L2n iln W2n  L3n

We'll use model selection criteria to choose (eg, AlCc)
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Fitting DFA models

It turns out that there are an infinite number of combinations of Z and
x that will equal y

Therefore we need to impose some constraints on the model
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Constraints on DFA models
The offset a

yt =ZX;+a+Vt
X = X¢—1 + W

ail

a

an |

We will set the first m elements ofato 0
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Constraints on DFA models

The offset a

For example,ifn =5andm =2

ail

a
as

aq

| d5 |

= a=

as

a4

| ds |
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Constraints on DFA models

The offset a

For example,ifn =5and m =2

ail
a
as
dq

as

=a=

0
0
as
a4

ds

= a=

o O O O O

Note, however, that this causes problems for the EM algorithm so we
will often de-mean the data and set q; = 0 for all i
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Constraints on DFA models

The loadings Z

yt =ZX;+a+Vt
X = X¢—1 + W

7211 221
712 22
=213 23

Zln  L2n

We will set the upper right triangle of Z to 0

<m,1
<m,2
Zm,3
<m,4

<im,n
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Constraints on DFA models

The loadings Z

For example, ifn =5and m =3

711
712
1 =|z3

{14

<1,5

For the firstm — 1 rows of Z, z;; = 0 if j > i

0
22,2
23
23
22,5

233
3.4

<3,5
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Constraints on DFA models
The loadings Z

An additional constraint is necessary in a Bayesian context

2z O 0

2 222 0

1 = 213 3 B3

<14 <23 <34

| <1,5 22,5 43,5 ]

Diagonal of Z is positive: z;; > 0 ifi =
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Constraints on DFA models

The state variance Q

yt =ZX;+a+Vt
X; = X—1 +wW;

w, ~ MVN(0, Q)

We will set Q equal to the Identity matrix I
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Constraints on DFA models

The state variance Q

For example, it m = 4

This allows our random walks to have a /ot of flexibility

o O O =

o O = O

-0 O

— o O O
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Dynamic Factor Analysis (DFA)

Including p covariates

yt =ZX;+a+Ddt+Vt

Xt = Xt_] + W[
d; is a p x 1 vector of covariates at time ¢

D is an n X p matrix of covariate effects
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Dynamic Factor Analysis (DFA)

Form for D
yt - ZX;+a+2dt +Vt
X = X¢—1 + Wy
Careful thought must be given a priori as to the form for D

Should the effect(s) vary by site, species, etc?
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Dynamic Factor Analysis (DFA)

Form for D

For example, given 2 covariates, Temp and Salinity

dTemp dSalinity
dTemp dS alinity
i dTemp dSalinity _
& — _

effects same by site/species

orD =

dTemp, 1 dS alinity, 1
dTemp,Z dS alinity,2
i dTemp,n dSalinity,n _
& - _J

effects differ by site/species
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A note on model selection

Earlier we saw that we could use model selection criteria to help us
choose among the different forms for Z

However, caution must be given when comparing models with and
without covariates, and varying numbers of states
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A note on model selection

Think about the model form

yt =ZX;+a+Dd;+VI

X; IS an undetermined random walk

d; is a predetermined covariate

Unless d is highly correlated with y, then the inclusion of a state x will
be favored over d
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A note on model selection

Thus, work out fixed effects (covariates) while keeping the random
effects (states) constant, and vice versa

For example, compare data support for models with different
combinations of covariates, only one state (m = 1), and a "diagonal and
equal" R
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Interpreting DFA results

Recall that we had to constrain the form of Z to fit the model

21,1 0) 0
A2 22 0
0
7 =
Zm,m
| Z{ln 2n L3.n imn

So, the 1st common factor is determined by the 1st variate, the 2nd
common factor by the first two variates, etc.
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Interpreting DFA results

To help with this, we can use a basis rotation to maximize the loadings
on a few factors

If H is an m X m non-singular matrix, these 2 DFA models are
equivalent

£ :ZXt+a+Ddt+Vt
X = Xi—1 + W

y, = ZH_lxt +a+ Dd; + v,
Hx; = Hx,_; + Hw;

How should we choose H?
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Basis rotation

Varimax

A varimax rotation will maximize the variance of the loadings in Z along
a few of the factors
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PCA of 5 wines with 8 attributes

Hedonic
[ ]
Acidit
CIAIY ®4 Alcohol
X1
®
For meat
Price
[ ]
For dessert
[ ]
Suga(
®
X2

70/73



Rotated loadings

R % -1t Hedonic
ciaity .o Alcoho
X1
®
For meat
Price
[ ]
For desse
[ ]
Suga(
®
R2 X2
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Rotated loadings

®
Hedonic

R1—=®
Acidity e

®
For meat

e Alcohol

® For dessert

R2

Sugar
L]

Price
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Topics for today

Deterministic vs stochastic elements
Regression with autocorrelated errors
Regression with temporal random effects
Dynamic Factor Analysis (DFA)

Forms of covariance matrix
- Constraints for model fitting

Interpretation of results
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