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Topics for today

Deterministic vs stochastic elements

Regression with autocorrelated errors

Regression with temporal random effects

Dynamic Factor Analysis (DFA)

Forms of covariance matrix

Constraints for model fitting

Interpretation of results

·

·

·
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A very simple model

Consider this simple model, consisting of a mean  plus error
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A very simple model

The right-hand side of the equation is composed of deterministic and
stochastic pieces
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A very simple model

Sometime these pieces are referred to as fixed and random
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A very simple model

This can also be seen by rewriting the model

as
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Simple linear regression

We can expand the deterministic part of the model, as with linear
regression

so
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A simple time series model

Consider a simple model with a mean  plus white noise
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Time series model with covariates

We can expand the deterministic part of the model, as before with
linear regression

so
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Example of linear model
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Model residuals

These do not look like white noise!
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ACF of model residuals

There is significant autocorrelation at lag = 1
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Model with autocorrelated errors

We can expand the stochastic part of the model to have autocorrelated
errors

with 
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Model with autocorrelated errors

We can expand the stochastic part of the model to have autocorrelated
errors

with 

We can write this model as our standard state-space model
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State-space model
Observation equation

with

, , , , 
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State-space model
State equation

with

 and 
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State-space model
Full form
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State-space model
Observation model in MARSS()

y = data         ## [1 x T] matrix of data 
a = matrix("a")  ## intercept 
D = matrix("D")  ## slope 
d = covariate    ## [1 x T] matrix of measured covariate 
Z = matrix(1)    ## no multiplier on x  
R = matrix(0)    ## v_t ~ N(0,R); want y_t = 0 for all t
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State-space model
State model in MARSS()

B = matrix("b")  ## AR(1) coefficient for model errors 
Q = matrix("q")  ## w_t ~ N(0,Q); var for model errors 
u = matrix(0)    ## u = 0 
C = matrix(0)    ## C = 0 
c = matrix(0)    ## c_t = 0 for all t
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MORE RANDOM EFFECTS
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Expanding the random effect

Recall our simple model

21/73



Expanding the random effect

We can expand the random portion
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Expanding the random effect

We can expand the random portion

This is simply a random walk observed with error
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Random walk observed with error
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Expanding fixed & random effects

We can expand the fixed portion
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Fixed & random effects
In familiar state-space form
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MULTIPLE TIME SERIES
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Simple model for 2+ time series
Random walk observed with error

with
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Random walk observed with error
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Random walk observed with error
In matrix form

with
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Environmental time series

We often observe covariance among environmental time series,
especially for those close to one another
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Are there some common patterns here?
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Common patterns in time series
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State-space model
Ex: population structure
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State-space model
Ex: Harbor seal population structure
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Finding common patterns

What if our observations were instead a mixture of 2+ states?

For example, we sampled haul-outs located between several breeding
sites
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Mixtures of states
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Finding common patterns

What if our observations were a mixture of states, but we didn't know
how many or the weightings?

What are the dimensions of ?

What are the elements within ?
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Dynamic Factor Analysis (DFA)

DFA is a dimension reduction technique, which models  observed time
series as a function of  hidden states (patterns), where 
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Dynamic Factor Analysis (DFA)
State-space form

data:  is 

loadings:  is  with 

states:  is 

41/73



Dimension reduction
Principal Components Analysis (PCA)

Goal is to reduce some large number of correlated variates into a few
uncorrelated factors
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Principal Components Analysis (PCA)

Calculating the principal components requires us to estimate the
covariance of the data

There will be  principal components (eigenvectors) for an  matrix 

We reduce the dimension by selecting a subset of the components that
explain much of the variance (eg, the first 2)
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Principal Components Analysis (PCA)
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Principal Components Analysis (PCA)
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Principal Components Analysis (PCA)
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Relationship between PCA & DFA

We need to estimate the covariance in the data 

so

In PCA, we require  to be diagonal, but not so in DFA
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Principal Components Analysis (PCA)
Forms for  with 
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Dynamic Factor Analysis (DFA)
Forms for  with 
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Dynamic Factor Analysis (DFA)

What form should we use for ?
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Dynamic Factor Analysis (DFA)

What form should we use for ?

We'll use model selection criteria to choose (eg, AICc)
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Fitting DFA models

It turns out that there are an infinite number of combinations of  and 
 that will equal 

Therefore we need to impose some constraints on the model
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Constraints on DFA models
The offset 

We will set the first  elements of  to 0
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Constraints on DFA models
The offset 

For example, if  and 
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Constraints on DFA models
The offset 

For example, if  and 

Note, however, that this causes problems for the EM algorithm so we
will often de-mean the data and set  for all 
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Constraints on DFA models
The loadings 

We will set the upper right triangle of  to 0
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Constraints on DFA models
The loadings 

For example, if  and 

For the first  rows of ,  if 
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Constraints on DFA models
The loadings 

An additional constraint is necessary in a Bayesian context

Diagonal of  is positive:  if 
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Constraints on DFA models
The state variance 

We will set  equal to the Identity matrix 
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Constraints on DFA models
The state variance 

For example, if 

This allows our random walks to have a lot of flexibility
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Dynamic Factor Analysis (DFA)
Including  covariates

 is a  vector of covariates at time 

 is an  matrix of covariate effects
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Dynamic Factor Analysis (DFA)
Form for 

Careful thought must be given a priori as to the form for 

Should the effect(s) vary by site, species, etc?
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Dynamic Factor Analysis (DFA)
Form for 

For example, given 2 covariates,  and 
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A note on model selection

Earlier we saw that we could use model selection criteria to help us
choose among the different forms for 

However, caution must be given when comparing models with and
without covariates, and varying numbers of states
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A note on model selection

Think about the model form

 is an undetermined random walk

 is a predetermined covariate

Unless  is highly correlated with , then the inclusion of a state  will
be favored over 
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A note on model selection

Thus, work out fixed effects (covariates) while keeping the random
effects (states) constant, and vice versa

For example, compare data support for models with different
combinations of covariates, only one state (  = 1), and a "diagonal and
equal" 
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Interpreting DFA results

Recall that we had to constrain the form of  to fit the model

So, the 1st common factor is determined by the 1st variate, the 2nd
common factor by the first two variates, etc.
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Interpreting DFA results

To help with this, we can use a basis rotation to maximize the loadings
on a few factors

If  is an  non-singular matrix, these 2 DFA models are
equivalent

How should we choose ?
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Basis rotation
Varimax

A varimax rotation will maximize the variance of the loadings in  along
a few of the factors
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PCA of 5 wines with 8 attributes

70/73



Rotated loadings
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Rotated loadings
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