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Points from Thursday

• Data affected by a perturbation is problematic for 
arima(), Arima().

• Seasonal ARIMA has effect of Jan (or Feb …) in year t 
on Jan (or Feb …) in year t+1.  Not typical when 
working with population data.

• Removing the mean season is different than a 
seasonal difference.

• Data with multiple seasons (daily, monthly, yearly) 
will be problematic for standard ARIMA seasonal 
models.

• Linear effects of past values might be problematic.



Weeks 1-3.5: building blocks for analysis of multivariate 
time-series data with observation error, structure, and 

missing values

• Matrix math (multivariate)
• Properties of time series data
• AR and MA models
Ø State-space models: observation + process model
• Model evaluation and model selection
• Fitting models with STAN (non-linear, non-Gaussian, 

disparate data streams)

Starting next week: we will put this all together 
to start analyzing ecological data sets



univariate linear state-space model
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The x model is the classic “random walk”.  
This model is a random walk observed with 

error.  



univariate linear state-space model
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Many textbooks on this class of model.  Used in extensively in economics 
and engineering



Definition: AR-1 or AR lag-1
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Value at time t is the value at time t-1 plus random 
error



Addition of “b” (<1) leads to process model with mean-
reversion,
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b<1: Gompertz density-dependent process

Log-space



This model is quite hard to fit
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b and u are confounded = ridge likelihood = many 
b/u combinations that fit the data

If you have observation error, you need either long 
times or replication to estimate this model.



Multiplicative random walks
• Population growth, somatic growth if growth is by percentage

• take log and you get the linear additive model above.  log-normal means 
that 10% increase is as likely as 10% decrease

),0(log~,1 qNormalwwnn tttt -= -l

Why is the AR-1 model so important in analysis 
of ecological data?

Additive random walks
• Movement, changes in gene frequency, somatic growth if 

growth is by fixed amounts

),0(~,1 qNormalwwuxx tttt ++= -
Why normal? The average of many small 
perturbations, regardless of their 
distribution, is normal
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An AR-1 random walk can show a wide-range of 
trajectories, even for the same parameter values

All trajectories came from the same rw model: xt= xt-1 -0.02+et, et ~ Normal(mean=0.0, var=0.01)
same as the “stochastic exponential growth model”: Nt= Nt-1 exp(-0.02+et)



Definition: state-space

The “state”, the x, is a hidden (dynamical) variable.  In this class, 
it is a hidden random walk.

Our data, y, are observations of this.

Often state-space models include inputs (explanatory variables).  
and typically at least the x is multivariate, and often also y.

The model you are seeing today is a simple univariate state-
space model with no inputs.
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univariate example: population count data
Yearly (usually) 
population (or 
subpopulation) 
counts

Missing 
values



Observation error
There IS some number of sea lions in our population in year x, but we don’t know 
that number precisely.  It is “hidden”.



Suppose we have the following data
(population counts logged)



What about fitting a regression line through the 
data?

),0(~;0 sba Normalzzty ttt ++=

Regression is fitting a deterministic process through the 
data
no “process” variability
all variability = “non-process or observation error”

A linear regression model

state



Versus a state-space model
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Autoregressive state-space models fit a RANDOM 
WALK through the data
variability = “observation error” + “process error”

state
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Difference between 
observation and process is 
the non-process error

Two types of variability
#1 observation or “non-process” variability

Process 
or state

Observation



The non-process (observation) variance is often 
unknowable in fisheries and ecological data

• Sightability varies due to factors that may not be fully 
understood or measureable
– Environmental factors (tides, temperature, etc.)
– Population factors (age structure, sex ratio, etc.)
– Species interactions (prey distribution, prey density, predator 

distribution or density, etc.)

• Sampling variability--due to how you actually count 
animals--is just one component of observation variance

Two types of variability
#1 observation or “non-process” variability
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#2 Process variability

This the process line.  It ‘wiggles’ due to process variability. The next 
few lectures we will focus on processes that are simple random walks 
with drift: ),0(~,1 qNormalwwuxx tttt ++= -
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process error at time t

Process error is the difference between the expected x(t) and 
the actual value

*If this were a population model, that means a the mean rate of decline is ca 2% per year

“x” shows the expected x(t) at 
time t;  it is like the prediction 
from a deterministic process

Let’s say that in x(t)=x(t-1)-0.02+e(t)*
The difference 
between “x”, the 
expected value, and 
the blue square, 
actual value, is the 
process error





One use of univariate state-space models is “count-based” 
population viability analysis (chap 6 HWS2014)



How you model your data has a large impact on your 
forecasts



5 10 15 20

3.
5

4.
0

4.
5

5.
0

5.
5

t

lo
g(
N
)

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
x

x
x

x

x

x
x

x
x

x

x

x

x

x

x
x

How can we separate process and non-process 
variance?

Wouldn’t these two variances be confounded and 
impossible to estimate simultaneously?
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How can we separate process and observation variance? 
They have different temporal patterns.

Process error: xt = xt-1 + u +et

Observation error:  yt = xt + ht

multiple 
sims of 
x(t) with 
same u 
and q

multiple 
sims of 
y(t) with 
same 
x(t)
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An AR-1 state-space model combines a model for the hidden AR-1 
process with a model for the observation process

…and allows us to separate the variances



Kalman Filter: Estimate the x in a state-space model

A mathematical algorithm that solves for the 
‘optimal’ (least error or maximum-likelihood) x_t

given all the data (y) from time 1 to t

Predict: Given an 
x_0, predict x_1 
from your model

Update: Given y_1, 
update your x_1 

estimate

Predict: Given an 
x_1, predict x_2 
from your model

Update: Given y_2, 
update your x_2 

estimate

Predict: Given an 
x_2, predict x_3 
from your model

Update: Given y_3, 
update your x_3 

estimate



Let’s simulate and try fitting some models

• Open up R and follow after me
• univariate_example_1.R
• univariate_example_2.R
• univariate_example_3.R



How to write a straight-line as AR-1

• ##Preliminaries: how to write 
##x=intercept+slope*t as a AR-1

• x(0)=intercept
• x(1)=x(0)+slope #this is x at t=1
• x(2)=x[1]+slope
• so..
• x(t)=x(t-1)+slope+w(t), w(t)~N(0,0)



MARSS R Package
• Fits MARSS models (multivariate AR-1 state-

space)
• General, fits any MARSS model with Gaussian 

errors

• But
• Maximum likelihood
• Slow.  Students working with large data sets have 

gotten huge speed improvements by coding their 
models in TMB



MARSS R Package
• Fits MARSS models (multivariate AR-1 state-

space)
• MARSS model syntax

X(t) = B X(t-1) + U + w(t), w(t) ~ N(0, Q)
Y(t) = Z X(t) + A + v(t), v(t) ~ N(0,R)

• fit2=MARSS(y,model=mod.list)

• y is data; model tells MARSS what the parameters are
• The parameters are MATRICES
• You write matrices just like they appear in your model on paper
• You pass model to MARSS as a list



MARSS model in matrix form 
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X(t) = B X(t-1) + U + w(t), w(t) ~ N(0, Q)
Y(t) = Z X(t) + A + v(t), v(t) ~ N(0,R)

mod.list=list(
U=matrix(“u"),
x0=matrix(0),
B=matrix(1),
Q=matrix(0.1),
Z=matrix(1),
A=matrix(0),
R=matrix("r"),
tinitx=0)
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Let’s say we want to fit this model:



Let’s simulate and try fitting some models

• Open up R and follow after me
• univariate_example_1.R
• univariate_example_2.R
• univariate_example_3.R



State-space diagnosticsState-space diagnostics



Basic diagnostics
Nile River models from the lab handout



Basic diagnostics: #1 plot the residuals
Model residuals State residuals

There should 
be no temporal 
trends!

They should 
be centered 
about 0.
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Difference between 
observation and process is 
the non-process error also 
called “model residual”

non-process error or model residual

Process 
or state

Observation
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forecasted state at time t 
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and the actual state at time t

process error or state residual
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Basic diagnostics: #2 check acf of residuals

v(t) are 
model 
residuals

w(t) are 
state 
residuals



Even our ‘best’ model is missing something...



Basic diagnostics: #3 Simulate from your 
estimated model and compare to the data.

Black line is the 
estimated state 
from model 2



Basic diagnostics #4 Simulate from 
known model and then test whether 

you can re-capture the true 
estimates



How do you know when to use a process error or 
observation error model?

• If your time-series data contain both types, use a model with 
both types.

• To estimate both variances, you need a) 20+ time steps OR b) 
multi-site data.  

• If you don’t have enough data, you need to use assumptions 
about one of the variances.  Meaning a) fix the value or b) 
incorporate a prior.

• Diagnostics: Observation error induces autocorrelation in the 
noise of an autoregressive process. Fit a process-error only 
model (R=0) and check for autocorrelation of residuals



Other types of “non-process” error

• Fluctuations that don’t have “feedback” (variance doesn’t 
explode)

• Lots of biological processes also create noise that looks like that
– age-structure cycles                   o  cyclic variability in fecundity
– density-dependence                    o  predator-prey interactions

• If your model cannot accommodate that cycling, 
– it tends to get ‘soaked’ up in the ‘non-process’ error component

• If your model can accommodate that cycling, 
– estimation of ‘observation error’ variance can be confounded, unless you 

have long, long datasets or replicates



Thursday lecture: multivariate state-space
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Thursday lab: fitting univariate and 
multivariate state-space models


