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Points from Thursday

Data affected by a perturbation is problematic for
arima(), Arima().

Seasonal ARIMA has effect of Jan (or Feb ...) in year t

on Jan (or Feb ...) in year t+1. Not typical when
working with population data.

Removing the mean season is different than a
seasonal difference.

Data with multiple seasons (daily, monthly, yearly)
will be problematic for standard ARIMA seasonal
models.

Linear effects of past values might be problematic.



Weeks 1-3.5: building blocks for analysis of multivariate
time-series data with observation error, structure, and
missing values

 Matrix math (multivariate)

* Properties of time series data

* AR and MA models

» State-space models: observation + process model
* Model evaluation and model selection

e Fitting models with STAN (non-linear, non-Gaussian,
disparate data streams)

Starting next week: we will put this all together
to start analyzing ecological data sets



univariate linear state-space mode|

X, =x_ +u+w, w ~ Normal(0,q)

y,=x,+v, v, ~ Normal(0,r)

The x model is the classic “random walk”.
This model is a random walk observed with
error.



univariate linear state-space model|

X, =x_ +u+w, w ~ Normal(0,q)

y,=x,+v, v, ~ Normal(0,r)

Forecasting, g
structural time Time Series

Time Series Analysis series mOde's and Ana?Sis
by State Space ‘Nﬂ(,'”ll)ds the Kalman filter ; an lts
Applications

Many textbooks on this class of model. Used in extensively in economics
and engineering
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Definition: AR-1 or AR lag-1

Value at time t is the value at time t-1 plus random
error

X, =X, -|-M+Wt

xt+1 — xt T Wt

x, =bx_ +u+w,



Addition of “b” (<1) leads to process model with mean-
reversion,

N, =exp(u + et)Ntb_1
_— xt :[b>'t—1 + 1y + et Log-space

e, ~ Normal(0,q)
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b<1: Gompertz density-dependent process



This model is quite hard to fit

N, =exp(u + et)Nf_1

p— Log-space

e, ~ Normal(0,q)

b and u are confounded = ridge likelihood = many
b/u combinations that fit the data

If you have observation error, you need either long
times or replication to estimate this model.



Why is the AR-1 model so important in analysis
of ecological data?

Additive random walks
* Movement, changes in gene frequency, somatic growth if
growth is by fixed amounts

x, =x_ +u+w, w ~ Normal(0,q)

Why normal? The average of many small
perturbations, regardless of their
distribution, is normal

Multiplicative random walks
* Population growth, somatic growth if growth is by percentage

n, =An_w,, w,~log— Normal(0,q)

* take log and you get the linear additive model above. log-normal means
that 10% increase is as likely as 10% decrease



An AR-1 random walk can show a wide-range of
trajectories, even for the same parameter values

All trajectories came from the same rw model: x,= X,; -0.02+e,, e, ~ Normal(mean=0.0, var=0.01)
same as the “stochastic exponential growth model”: N;.= N,; exp(-0.02+e,)
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Definition: state-space

The “state”, the x, is a hidden (dynamical) variable. In this class,
it is a hidden random walk.

Our data, vy, are observations of this.

Often state-space models include inputs (explanatory variables).
and typically at least the x is multivariate, and often also y.

The model you are seeing today is a simple univariate state-
space model with no inputs.

state process X, = X, tU+W,, W, ~ Normal(O, Q)

obs process Vi = X; TV, V™ NOVWZCZI(O, 7‘)



univariate example: population count data

Yearly (usually)
population (or
subpopulation)

counts
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Observation error




Iog(N)

Suppose we have the following data
(population counts logged)
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log(N)

A linear regression model
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y,=a,+ pt+z,;z, ~ Normal(0,0)
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log(N)
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Versus a state-space model

Autoregressive state-space models fit a RANDOM
WALK through the data
variability = “observation error” + “process error”

o o State
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Two types of variability
#1 observation or “non-process” variability

Observation

° Process
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Difference between
observation and process is
the non-process error
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Two types of variability

#1 observation or “non-process” variability

The non-process (observation) variance is often
unknowable in fisheries and ecological data

* Sightability varies due to factors that may not be fully
understood or measureable
— Environmental factors (tides, temperature, etc.)
— Population factors (age structure, sex ratio, etc.)

— Species interactions (prey distribution, prey density, predator
distribution or density, etc.)

 Sampling variability--due to how you actually count
animals--is just one component of observation variance
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#2 Process variability

This the process line. It ‘wiggles’ due to process variability. The next

few lectures we will focus on processes that are simple random walks
with drift: X, =x,_, +u+w,, w, ~ Normal(0,q)




Process error is the difference between the expected x(t) and
the actual value

Let’s say that in x(t)=x(t-1)-0.02+e(t)*
The difference

- R / between “x”, the
I \ expected value, and
. —_— / T the blue square,
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*If this were a population model, that means a the mean rate of decline is ca 2% per year
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One use of univariate state-space models is “count-based”
population viability analysis (chap 6 HWS2014)
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How you model your data has a large impact on your

forecasts
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How can we separate process and non-process

log(N)
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variance?

Wouldn’t these two variances be confounded and

impossible to estimate simultaneously? )
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How can we separate process and observation variance?
They have different temporal patterns.

Process error: x, = X, + U +e,

multiple s y i

simsof - s = B . "

x(t) with ¢ S =1

same u S ) & 4

and q ——— X —— —
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Index Index Index
Observation error: vy, = x, + 1
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An AR-1 state-space model combines a model for the hidden AR-1
process with a model for the observation process

...and allows us to separate the variances

Process model

Observation model

X, =x_, tu+w,

w, ~ Normal(0, q)

yt — xl‘ T vt
v, ~ Normal(0,r)

AR lag-1

random walk with drift
normally distributed
process errors

observation errors
normally distributed
process errors

@



Kalman Filter: Estimate the x in a state-space model

A mathematical algorithm that solves for the
‘optimal’ (least error or maximum-likelihood) x_t
given all the data (y) from time 1 to t

Predict: Given an Predict: Given an Predict: Given an
X_0, predict x_1 X_1, predict x_2 X_2, predict x_3
from your model from your model from your model

l l l

Update: Giveny 1, Update: Giveny 2, Update: Giveny 3,
update your x_1 update your x_2 update your x_3
estimate estimate estimate



Let’s simulate and try fitting some models

 Open up R and follow after me

* univariate_example 1.R

* univariate_example 2.R

* univariate_example 3.R



How to write a straight-line as AR-1

#H#HPreliminaries: how to write
##x=intercept+slope*t as a AR-1

x(0)=intercept
X(1)=x(0)+slope #this is x at t=1
X(2)=x[1]+slope

SO..
X(t)=x(t-1)+slope+w(t), w(t)~N(0,0)



MARSS R Package

Fits MARSS models (multivariate AR-1 state-
space)

General, fits any MARSS model with Gaussian
errors

But
Maximum likelihood

Slow. Students working with large data sets have
gotten huge speed improvements by coding their
models in TMB



MARSS R Package

* Fits MARSS models (multivariate AR-1 state-
space)
* MARSS model syntax

X(t) = B X(t-1) + U + w(t), w(t) ~ N(0, Q)
Y(t) =Z X(t) + A + v(t), v(t) ~ N(O,R)

fit2=MARSS (y,model=mod.list)

y is data; model tells MARSS what the parameters are

The parameters are MATRICES

You write matrices just like they appear in your model on paper
You pass model to MARSS as a list



MARSS model in matrix form
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X(t) = B X(t-1) + U + w(t), w(t) ~ N(0, Q)
Y(t) =Z X(t) + A + v(t), v(t) ~ N(O,R)

o Let’'s say we want to fit this model:
mod.list=list(

U=matrix(“u"), )
x0=matrix(0), X, =X, T U+ W, W, ~ N(O, o =0. 1)
B=matrix(1),

Q=matrix(0.1), yt = xt T vt?vt ~ N(09 I")

Z=matrix(1),
A=matrix(0),
R=matrix("r"),
tinitx=0)

x, =0



Let’s simulate and try fitting some models

 Open up R and follow after me

* univariate_example 1.R

* univariate_example 2.R

* univariate_example 3.R
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Basic diagnhostics

Nile River models from the lab handout
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Basic diagnostics: #1 plot the residuals

There should
be no temporal
trends!

They should
be centered
about 0.
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non-process error or model residual

Observation

° Process
PN °or state

Difference between
observation and process is
the non-process error also
called “model residual”
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process error or state residual

Observation
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Basic diagnostics: #2 check acf of residuals

flat level v(t) linear trend v(t)
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Flow volume
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Basic diagnostics: #3 Simulate from your
estimated model and compare to the data.

1400

Black line is the
- estimated state
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4

Basic diagnostics #4 Simulate from
known model and then test whether
you can re-capture the true

estimates
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How do you know when to use a process error or
observation error model?

If your time-series data contain both types, use a model with
both types.

To estimate both variances, you need a) 20+ time steps OR b)
multi-site data.

If you don’t have enough data, you need to use assumptions
about one of the variances. Meaning a) fix the value or b)
Incorporate a prior.

Diagnostics: Observation error induces autocorrelation in the

noise of an autoregressive process. Fit a process-error only
model (R=0) and check for autocorrelation of residuals



Other types of “non-process” error

Fluctuations that don’t have “feedback” (variance doesn’t
explode)

Lots of biological processes also create noise that looks like that

— age-structure cycles o cyclic variability in fecundity
— density-dependence o predator-prey interactions

If your model cannot accommodate that cycling,
— it tends to get ‘soaked’ up in the ‘non-process’ error component

If your model can accommodate that cycling,

— estimation of ‘observation error’ variance can be confounded, unless you
have long, long datasets or replicates



Thursday lab: fitting univariate and
multivariate state-space models
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Thursday lecture: multivariate state-space




