
Fitting and Selecting ARIMA models
FISH 507 – Applied Time Series Analysis

Eli Holmes

17 Jan 2019

Box-Jenkins method

A. Model form selection

1. Evaluate stationarity
2. Selection of the differencing level (d) – to fix stationarity

problems
3. Selection of the AR level (p)
4. Selection of the MA level (q)

B. Parameter estimation

C. Model checking

Good news

Much of the Box-Jenkins method will be automated with the
forecast package functions, which we will use in the lab.

Stationarity

Stationarity means ‘not changing in time’ in the context of
time-series models. Typically we test the trend and variance,
however more generally all statistical properties of a time-series is
time-constant if the time series is ‘stationary’.

Example

Many ARMA models exhibit stationarity. White noise is one type:

xt = et , et ∼ N(0, σ)

−2

−1

0

1

2

0 25 50 75 100

va
lu

e

White Noise

−2

0

2

0 25 50 75 100

va
lu

e

The variance of a white noise process is steady

Example

An AR-1 process with −1 < b < 1

xt = φxt−1 + et

is also stationary.

−5.0

−2.5

0.0

2.5

0 25 50 75 100

va
lu

e

AR−1

−5.0

−2.5

0.0

2.5

0 25 50 75 100

va
lu

e

The variance of an AR−1 process is steady

Stationarity around non-zero mean
We can also have stationarity around a non-zero level or around a
linear trend.

−2
−1

0
1
2

0 25 50 75 100

t

w
n

White noise

−5.0

−2.5

0.0

2.5

0 25 50 75 100

t

ar
1

AR1

−2
−1

0
1
2

0 25 50 75 100

t

w
ni

with non−zero mean

−4
−2

0
2

0 25 50 75 100

t
ar

1i

with non−zero mean

0

4

8

12

0 25 50 75 100

t

w
nt

i

with linear trend

0.0
2.5
5.0
7.5

0 25 50 75 100

t

ar
1t

i

with linear trend

Mathematically it looks like this

AR-1

1. Non-zero mean adds µ: xt = µ+ φxt−1 + et
2. Linear trend adds at: xt = µ+ at + φxt−1 + et

White noise (b = 0)

1. Non-zero mean: xt = µ+ et
2. Linear trend: xt = µ+ at + et

Non-stationarity

One of the most common forms of non-stationarity that is tested for
is that the process is a random walk xt = xt−1 + et . A test for an
underlying random walk is called a ‘unit root’ test.

−15

−10

−5

0

0 25 50 75 100

va
lu

e

Random Walk

−20

−10

0

10

0 25 50 75 100

va
lu

e

The variance of a random walk process grows in time

Random walk with µ and at added

Similar to the way we added an intecept and linear trend to the
stationarity process equations, we can do the same to the random
walk equation.

1. Non-zero mean or intercept: xt = µ+ xt−1 + et

2. Linear trend: xt = µ+ at + xt−1 + et

Random walk with µ and at added
The effects are fundamentally different however. The addition of µ
leads to a upward mean linear trend while the addition of at leads
to exponential growth (or decline).

−25
−20
−15
−10
−5

0

0 25 50 75 100

t

y

Random Walk

0

20

40

0 25 50 75 100

t

yi

with non−zero mean added

0
200
400

0 25 50 75 100

t

yt
i

with linear trend added

Testing for stationarity

Why is evaluating stationarity important?

I Many AR models have a flat level or trend and time-constant
variance. If your data do not have those properties, you are
fitting a model that is fundamentally inconsistent with your
data.

I Many standard algorithms for fitting ARIMA models assume
stationarity. Note, you can fit ARIMA models without making
this assumption, but you need to use the appropriate algorithm.

Testing for stationarity

We will discuss three common approaches to evaluating stationarity:

I Visual test
I (Augmented) Dickey-Fuller test
I KPSS test

Visual test

The visual test is simply looking at a plot of the data versus time.
Look for

I Change in the level over time. Is the time series increasing or
decreasing? Does it appear to cycle?

I Change in the variance over time. Do deviations away from the
mean change over time, increase or decrease?

Example anchovy and sardine catch in Greek waters

Anchovy Sardine

1970 1980 1990 1970 1980 1990

8.5

9.0

9.5

10.0

Year

lo
g.

m
et

ric
.to

ns

Dickey-Fuller test

The Dickey=Fuller test (and Augmented Dickey-Fuller test) look for
evidence that the time series has a unit root.

The null hypothesis is that the time series has a unit root, that is,
it has a random walk component.

The alternative hypothesis is some variation of stationarity. The
test has three main verisons.

Dickey-Fuller nulls and alternatives

It is hard to see but in the panels on the left, the variance around
the trend is increasing and on the right, it is not.

−20
−10

0
10

0 25 50 75 100

va
lu

e

Random walk

Null Non−stationary

−5.0
−2.5

0.0
2.5
5.0

0 25 50 75 100

va
lu

e

AR1

Alternate Stationary

0
20
40
60

0 25 50 75 100

va
lu

e

Random walk + constant (drift)

0
3
6

0 25 50 75 100
va

lu
e

AR1 + constant (non−zero level)

Alternate

0
200
400
600

0 25 50 75 100

va
lu

e

Random walk + linear trend (a*t)

0
20
40

0 25 50 75 100

va
lu

e

AR1 + linear trend

Alternate

Dickey-Fuller test using tseries::adf.test()

adf.test() in the tseries package will apply the Augmented
Dickey-Fuller with a constant and trend and report the p-value.
We want to reject the Dickey=Fuller null hypothesis of
non-stationarity. We will set k=0 to apply the Dickey-Fuller test
which tests for AR(1) stationarity. The Augmented Dickey-Fuller
tests for more general lag-p stationarity.

adf.test(x, alternative = c("stationary", "explosive"),
k = trunc((length(x)-1)^(1/3)))

Example: Dickey-Fuller tests on the anchovy time series

Here is how to apply this test to the anchovy data. The null
hypothesis is not rejected. That is not what we want.
adf.test(anchovyts, k=0)

##
Augmented Dickey-Fuller Test
##
data: anchovyts
Dickey-Fuller = -3.4558, Lag order = 0, p-value =
0.07003
alternative hypothesis: stationary

Dickey-Fuller test with urca::ur.df

The urca R package can also be used to apply the Dickey-Fuller
tests. Use lags=0 for Dickey-Fuller which tests for AR(1)
stationarity. We will set type="trend" to deal with the trend seen
in the anchovy data. Note, adf.test() uses this type by default.

ur.df(y, type = c("none", "drift", "trend"), lags = 0)

Dickey-Fuller test with ‘ur.df’

test = urca::ur.df(anchovyts, type="trend", lags=0)
test

##
###
Augmented Dickey-Fuller Test Unit Root / Cointegration Test
###
##
The value of the test statistic is: -3.4558 4.3568 5.9805

Dickey-Fuller test with ‘ur.df’

The test statistic and the critical value at α = 0.05 are
attr(test, "teststat")

tau3 phi2 phi3
statistic -3.455795 4.356764 5.980506
attr(test,"cval")

1pct 5pct 10pct
tau3 -4.15 -3.50 -3.18
phi2 7.02 5.13 4.31
phi3 9.31 6.73 5.61

The statistic is larger than the critical value and thus the null
hypothesis of non-stationarity is not rejected. That’s not what we
want.

The τ3 is the one we want. This is the stationarity parameter.

xt = φxt−1 + µ+ at + et

xt − xt−1 = τ3xt−1 + φ2 + φ3t + et

KPSS test

The Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test has as the
null hypothesis that the time series is stationary around a level trend
(or a linear trend). The alternative hypothesis for the KPSS test is a
random walk.

The stationarity assumption is general; it does not assume a specific
type of stationarity such as white noise.

If both KPSS and Dickey-Fuller tests support non-stationarity, then
the stationarity assumption is not supported.

Example: KPSS tests

tseries::kpss.test(anchovyts, null="Trend")

##
KPSS Test for Trend Stationarity
##
data: anchovyts
KPSS Trend = 0.14779, Truncation lag parameter = 2,
p-value = 0.04851

Here null="Trend" was included to account for the increasing
trend in the data. The null hypothesis of stationarity is rejected.
Thus both the KPSS and Dickey-Fuller tests support the hypothesis
that the anchovy time series is non-stationary. That’s not what we
want.

Differencing the data to make the mean stationary

Differencing means to create a new time series zt = xt − xt−1. First
order differencing means you do this once (so zt) and second order
differencing means you do this twice (so zt − zt−1).

The diff() function takes the first difference:
x <- diff(c(1,2,4,7,11))
x

[1] 1 2 3 4

The second difference is the first difference of the first difference.
diff(x)

[1] 1 1 1

Anchovy catch first differenced

Here is a plot of the anchovy data and its first difference.

an
ch

ov
yt

s

1965 1970 1975 1980 1985 1990

8.
5

9.
0

9.
5

10
.0

Anchovy

di
ff(

an
ch

ov
yt

s)

1965 1970 1975 1980 1985
−

0.
2

0.
0

0.
2

0.
4

Anchovy 1st diff

Stationarity of the first differences

Let’s test the anchovy data with one difference using the KPSS test.
diff.anchovy = diff(anchovyts)
kpss.test(diff.anchovy)

##
KPSS Test for Level Stationarity
##
data: diff.anchovy
KPSS Level = 0.089671, Truncation lag parameter = 2,
p-value = 0.1

The null hypothesis of stationairity is not rejected. That is good.

Stationarity of the first differences

Let’s test the first difference of the anchovy data using the
Augmented Dickey-Fuller test. We do the default test and allow it
to chose the number of lags.
adf.test(diff.anchovy)

##
Augmented Dickey-Fuller Test
##
data: diff.anchovy
Dickey-Fuller = -3.2718, Lag order = 2, p-value =
0.09558
alternative hypothesis: stationary

The null hypothesis of non-stationarity is not rejected. That is not
what we want. However, we differenced which removed the trend
thus we are testing against a more general model than we need.
Let’s test with an alternative hypothesis that has a non-zero mean
and no trend. We can do this with ur.df() and type='drift'.
test <- ur.df(diff.anchovy, type="drift")

The test statistic and the critical values are
attr(test, "teststat")

tau2 phi1
statistic -5.108275 13.15327
attr(test,"cval")

1pct 5pct 10pct
tau2 -3.75 -3.00 -2.63
phi1 7.88 5.18 4.12

The null hypothesis of NON-stationairity IS rejected. That is good.

forecast::ndiffs() function

As an alternative to trying many different differences, you can use
the ndiffs() function in the forecast package. This automates
finding the number of differences needed.
forecast::ndiffs(anchovyts, test="kpss")

[1] 1
forecast::ndiffs(anchovyts, test="adf")

[1] 1

Summary

Test stationarity before you fit a ARMA model.

Visual test: Do the data fluctuate around a level or do they have a
trend or look like a random walk?

Yes or maybe? -> Apply a “unit root” test. ADF or KPSS

No or fails the unit root test? -> Apply differencing and re-test.

Still not passing? -> Try a second difference or you may need to
transform the data (if say it has an exponential trend).

Still not passing? -> ARMA model might not be the best choice.
Or you may need to use an adhoc detrend.

These steps are automated by the forecast package

Box-Jenkins method

A. Model form selection

1. Evaluate stationarity
2. Selection of the differencing level (d) – to fix stationarity

problems
3. Selection of the AR level (p)
4. Selection of the MA level (q)

B. Parameter estimation

C. Model checking

ACF and PACF
On Tuesday, you learned how to use ACF and PACF to visually infer
the AR and MA lags for a ARMA model.

0 2 4 6 8 10 12

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Series diff(anchovy)

2 4 6 8 10 12

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Lag

P
ar

tia
l A

C
F

Series diff(anchovy)

Figure 1: ACF and PACF of anchovy time series.

Formal model selection

This weighs how well the model fits against how many parameters
your model has. Basic idea is to fit (many) models and use AIC,
AICc or BIC to select.

The auto.arima() function in the forecast package in R allows
you to easily do this and will also select the level of differencing (via
ADF or KPSS tests).
forecast::auto.arima(anchovy)

Type ?forecast::auto.arima to see a full description of the
function.

Model selection with auto.arima()

forecast::auto.arima(anchovy)

Series: anchovy
ARIMA(0,1,1) with drift
##
Coefficients:
ma1 drift
-0.6685 0.0542
s.e. 0.1977 0.0142
##
sigma^2 estimated as 0.04037: log likelihood=5.39
AIC=-4.79 AICc=-3.65 BIC=-1.13

The output indicates that the ‘best’ model is a MA(1) with first
difference. “with drift” means that the mean of the anchovy first
differences (the data for the model) is not zero.

Trace = TRUE
By default, step-wise selection is used for the model search. You
can see what models that auto.arima() tried using trace=TRUE.
The models are selected on AICc by default and the AICc value is
shown next to the model.
forecast::auto.arima(anchovy, trace=TRUE)

##
ARIMA(2,1,2) with drift : 4.765453
ARIMA(0,1,0) with drift : 0.01359746
ARIMA(1,1,0) with drift : -0.1662165
ARIMA(0,1,1) with drift : -3.647076
ARIMA(0,1,0) : -1.554413
ARIMA(1,1,1) with drift : Inf
ARIMA(0,1,2) with drift : Inf
ARIMA(1,1,2) with drift : 1.653078
ARIMA(0,1,1) : -1.372929
##
Best model: ARIMA(0,1,1) with drift

Series: anchovy
ARIMA(0,1,1) with drift
##
Coefficients:
ma1 drift
-0.6685 0.0542
s.e. 0.1977 0.0142
##
sigma^2 estimated as 0.04037: log likelihood=5.39
AIC=-4.79 AICc=-3.65 BIC=-1.13

Selected model

First difference of the data is MA(1) with drift

xt − xt−1 = µ+ wt + θ1wt−1

where wt is white noise.

Example: Fit to simulated AR(2) data

set.seed(100)
a1 = arima.sim(n=100, model=list(ar=c(.8,.1)))
forecast::auto.arima(a1, seasonal=FALSE, max.d=0)

Series: a1
ARIMA(1,0,0) with non-zero mean
##
Coefficients:
ar1 mean
0.6928 -0.5343
s.e. 0.0732 0.2774
##
sigma^2 estimated as 0.7703: log likelihood=-128.16
AIC=262.33 AICc=262.58 BIC=270.14

The ‘best-fit’ model is AR(1) not AR(2).

How often is the ‘true’ model is chosen

Let’s run 100 simulations of a AR(2) process and record the best
fits.
save.fits = rep(NA,100)
for(i in 1:100){

a1 = arima.sim(n=100, model=list(ar=c(.8,.1)))
fit = forecast::auto.arima(a1, seasonal=FALSE, max.d=0, max.q=0)
save.fits[i] = paste0(fit$arma[1], "-", fit$arma[2])

}

Overwhelmingly the correct type of model (AR) is selected, but
usually a simpler model of AR(2) is chosen over AR(2).

Table heading is AR order - MA order.
table(save.fits)

save.fits
1-0 2-0 3-0 4-0
74 20 5 1

stepwise=FALSE

By default, step-wise selection is used and an approximation is used
for the models tried in the model selection step. For a final model
selection, you should turn these off.
forecast::auto.arima(anchovy, stepwise=FALSE,

approximation=FALSE)

Series: anchovy
ARIMA(0,1,1) with drift
##
Coefficients:
ma1 drift
-0.6685 0.0542
s.e. 0.1977 0.0142
##
sigma^2 estimated as 0.04037: log likelihood=5.39
AIC=-4.79 AICc=-3.65 BIC=-1.13

Summary: model selection and fitting

I Once you have dealt with stationarity, you need to determine
the order of the model: the AR part and the MA part.

I Although you could simply use auto.arima(), it is best to run
acf() and pacf() on your data to understand it better.
Definitely you want to plot your data and visually look for
stationarity issues.

I Also evaluate if there are reasons to assume a particular
structure.

I Are you using an established model form, from say another
paper?

I Are you fitting to a process that is fundamentally AR only or
AR + MA?

Box-Jenkins method

A. Model form selection

1. Evaluate stationarity
2. Selection of the differencing level (d) – to fix stationarity

problems
3. Selection of the AR level (p)
4. Selection of the MA level (q)

B. Parameter estimation

C. Model checking

Check the residuals

Residuals = difference between the expected (fitted) value of xt and
the data

There is no observation error in an ARMA model. The expected
value is the xt expected from data up to t − 1.

xt = φ1xt−1 + φ2xt−2 + wt

x̂t = φ1xt−1 + φ2xt−2

residuals() function in R

The residuals() function will return the residuals for fitted
models.
fit <- forecast::auto.arima(anchovy)
residuals(fit)

Time Series:
Start = 1
End = 26
Frequency = 1
[1] 0.008549039 -0.249032308 -0.004098059 0.281393071
[5] -0.006015194 0.043859685 -0.123711732 -0.137125900
[9] 0.142098844 -0.011246624 -0.328608840 -0.358310373
[13] 0.198311913 -0.157824727 -0.028321380 0.092732171
[17] 0.136826748 -0.078995675 0.245238274 -0.046755189
[21] 0.222279848 0.153983301 0.093036353 0.307250228
[25] -0.103051063 -0.383026466

fitted() function in R

The fitted() function will return the expected values. Remember
that for a ARMA model, these are the expected values conditioned
on the data up to time t − 1.
fitted(fit)

Time Series:
Start = 1
End = 26
Frequency = 1
[1] 8.594675 8.606878 8.550151 8.610325 8.762619 8.814978
[7] 8.883569 8.896418 8.905111 9.006436 9.056857 9.002066
[13] 8.937456 9.057378 9.059236 9.104026 9.188947 9.288486
[19] 9.316477 9.451955 9.490634 9.618501 9.723727 9.808749
[25] 9.964784 9.984801

The residuals are data minus fitted.

Standard residuals tests

I Plot the residuals. They should look roughly like white noise.
I Look at the ACF of the residuals. They should be uncorrelated.
I Look at the histogram. They should be normally distributed (if

that is your error assumption).

Residuals check with forecast package
forecast::checkresiduals(fit)

−0.4

−0.2

0.0

0.2

0 5 10 15 20 25

Residuals from ARIMA(0,1,1) with drift

−0.4

−0.2

0.0

0.2

0.4

1 2 3 4 5 6 7 8 9

Lag

A
C

F

0.0

2.5

5.0

7.5

10.0

−0.4 0.0 0.4

residuals

co
un

t

Test for autocorrelation

The standard test for autocorrelated time-series residuals is the
Ljung-Box test. The null hypothesis for this test is no
autocorrelation. We do not want to reject the null.
forecast::checkresiduals(fit, plot=FALSE)

##
Ljung-Box test
##
data: Residuals from ARIMA(0,1,1) with drift
Q* = 1.0902, df = 3.2, p-value = 0.8087
##
Model df: 2. Total lags used: 5.2

p > 0.05 would be interpreted as not enough statistical evidence to
reject the null hypothesis.

Forecasting (brief)

The basic idea of forecasting with an ARIMA model to estimate the
parameters and forecast forward.

For example, let’s say we want to forecast with this ARIMA(2,1,0)
model:

yt = µ+ β1yt−1 + β2yt−2 + et

or as Arima() would write this model:

(yt − m) = β1(yt−1 − m) + β2(yt−2 − m) + et

where yt is the first difference of our anchovy data.
µ = m(1 − β1 − β2).

Let’s estimate the β’s for this model from the anchovy data.
fit <- forecast::Arima(anchovyts, order=c(2,1,0), include.constant=TRUE)
coef(fit)

ar1 ar2 drift
-0.53850433 -0.44732522 0.05367062
mu <- coef(fit)[3]*(1-coef(fit)[1]-coef(fit)[2])
mu

drift
0.1065807

So we will forecast with this model:

yt = 0.1065807 − 0.53850433yt−1 − 0.44732522yt−2 + et

To get our forecast for 1990, we do this

(x1990 −x1989) = 0.106−0.538(x1989 −x1988) −0.447(x1988 −x1987)

Thus

x1990 = x1989 + 0.106 − 0.538(x1989 − x1988) − 0.447(x1988 − x1987)

Here is R code to do that:
anchovyts[26]+mu+coef(fit)[1]*(anchovyts[26]-anchovyts[25])+

coef(fit)[2]*(anchovyts[25]-anchovyts[24])

drift
9.962083

Forecasting with forecast()

forecast(fit, h=h) automates the forecast calculations for us
and computes the upper and lower prediction intervals. Prediction
intervals include uncertainty in parameter estimates plus the process
error uncertainty.
fr <- forecast::forecast(fit, h=5)
fr

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
1990 9.962083 9.702309 10.22186 9.564793 10.35937
1991 9.990922 9.704819 10.27703 9.553365 10.42848
1992 9.920798 9.623984 10.21761 9.466861 10.37473
1993 10.052240 9.713327 10.39115 9.533917 10.57056
1994 10.119407 9.754101 10.48471 9.560719 10.67809

Plotting our forecasts
plot(fr, xlab="Year")

Forecasts from ARIMA(2,1,0) with drift

Year

1965 1970 1975 1980 1985 1990 1995

8.
5

9.
0

9.
5

10
.0

10
.5

Missing values

Missing values are allowed for Arima() and arima(). We can
produce forecasts with the same code.
anchovy.miss <- anchovyts
anchovy.miss[10:11] <- NA
anchovy.miss[20:21] <- NA
fit <- forecast::auto.arima(anchovy.miss)
fr <- forecast::forecast(fit, h=5)
fr

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
1990 9.922074 9.678431 10.16572 9.549455 10.29469
1991 9.976827 9.724114 10.22954 9.590336 10.36332
1992 10.031579 9.770111 10.29305 9.631699 10.43146
1993 10.086332 9.816392 10.35627 9.673495 10.49917
1994 10.141084 9.862931 10.41924 9.715686 10.56648

plot(fr)
Forecasts from ARIMA(0,1,1) with drift

1965 1970 1975 1980 1985 1990 1995

8.
5

9.
0

9.
5

10
.0

10
.5

Seasonality

Load the chinook salmon data set
load("chinook.RData")
head(chinook)

Year Month Species log.metric.tons metric.tons
1 1990 Jan Chinook 3.397858 29.9
2 1990 Feb Chinook 3.808882 45.1
3 1990 Mar Chinook 3.511545 33.5
4 1990 Apr Chinook 4.248495 70.0
5 1990 May Chinook 5.200705 181.4
6 1990 Jun Chinook 4.371976 79.2

The data are monthly and start in January 1990. To make this into
a ts object do
chinookts <- ts(chinook$log.metric.tons, start=c(1990,1),

frequency=12)

start is the year and month and frequency is the number of
months in the year.

Use ?ts to see more examples of how to set up ts objects.

Plot seasonal data

plot(chinookts)

Time

ch
in

oo
kt

s

1990 1995 2000 2005 2010 2015

−
2

0
2

4
6

Seasonal ARIMA model

Seasonally differenced data:

zt = xt − xt+s − m

Basic structure of a seasonal AR model

zt = AR(p) + AR(season) + AR(p+season)

Example AR(1) non-seasonal part + AR(1) seasonal part

zt = φ1zt−1 + Φ1zt−12 − φ1Φ1zt−13

Notation

ARIMA (p,d,q)(ps,ds,qs)S

ARIMA (1,0,0)(1,1,0)[12]

auto.arima() for seasonal ts
auto.arima() will recognize that our data has season and fit a
seasonal ARIMA model to our data by default. We will define the
training data up to 1998 and use 1999 as the test data.
traindat <- window(chinookts, c(1990,10), c(1998,12))
testdat <- window(chinookts, c(1999,1), c(1999,12))
fit <- forecast::auto.arima(traindat)
fit

Series: traindat
ARIMA(1,0,0)(0,1,0)[12] with drift
##
Coefficients:
ar1 drift
0.3676 -0.0320
s.e. 0.1335 0.0127
##
sigma^2 estimated as 0.758: log likelihood=-107.37
AIC=220.73 AICc=221.02 BIC=228.13

Forecast using seasonal model
fr <- forecast::forecast(fit, h=12)
plot(fr)
points(testdat)

Forecasts from ARIMA(1,0,0)(0,1,0)[12] with drift

1992 1994 1996 1998 2000

−
5

0
5

Missing values
Missing values are ok when fitting a seasonal ARIMA model

Forecasts from ARIMA(1,0,0)(0,1,0)[12] with drift

1992 1994 1996 1998 2000

−
5

0
5

Summary

Basic steps for identifying a seasonal model. forecast automates
most of this.

I Check that you have specified your season correctly in your ts
object.

I Plot your data. Look for trend, seasonality and random walks.

Summary

I Use differencing to remove season and trend.
I Season and no trend. Take a difference of lag = season
I No seasonality but a trend. Try a first difference
I Both. Do both types of differences
I Neither. No differencing.
I Random walk. First difference.
I Parametric looking curve. Tranform.

Summary

I Examine the ACF and PACF of the differenced data.
I Look for patterns (spikes) at seasonal lags

I Estimate likely models and compare with model selection
criteria (or cross-validation). Use TRACE=TRUE

I Do residual checks.

