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White noise (WN)

A time series  is discrete white noise if its values are

The distributional form for  is flexible

1. independent

2. identically distributed with a mean of zero
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White noise (WN)
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Gaussian white noise

We often assume so-called Gaussian white noise, whereby

and the following apply as well

    autocovariance:  

    autocorrelation:   
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Gaussian white noise
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Random walk (RW)

A time series  is a random walk if

1. 

2.  is white noise
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Random walk (RW)
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Biased random walk

A biased random walk (or random walk with drift) is written as

where  is the bias (drift) per time step and  is white noise
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Biased random walk
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Differencing a biased random walk

First-differencing a biased random walk yields a constant mean (level) 
 plus white noise
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Differencing a biased random walk
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LINEAR STATIONARY MODELS
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Linear stationary models

We saw last week that linear filters are a useful way of modeling time
series

Here we extend those ideas to a general class of models call
autoregressive moving average (ARMA) models
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Autoregressive (AR) models

Autoregressive models are widely used in ecology to treat a current
state of nature as a function its past state(s)
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Autoregressive (AR) models

An autoregressive model of order p, or AR(p), is defined as

where we assume

1.  is white noise

2.  for an order-p process
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Examples of AR(p) models

AR(1)

 
AR(1) with  (random walk)

 
AR(2)

17/70



Examples of AR(p) models
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Stationary AR(p) models

Recall that stationary processes have the following properties

We seek a means for identifying whether our AR(p) models are also
stationary

1. no systematic change in the mean or variance 

2. no systematic trend 

3. no periodic variations or seasonality
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Stationary AR(p) models

We can write out an AR(p) model using the backshift operator
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Stationary AR(p) models

If we treat  as a number (or numbers), we can out write the
characteristic equation as

To be stationary, all roots of the characteristic equation must exceed 1
in absolute value
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Stationary AR(p) models

For example, consider this AR(1) model from earlier
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Stationary AR(p) models

For example, consider this AR(1) model from earlier

This model is indeed stationary because 
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Stationary AR(p) models

What about this AR(2) model from earlier?
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Stationary AR(p) models

What about this AR(2) model from earlier?

This model is not stationary because only one 
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What about random walks?

Consider our random walk model
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What about random walks?

Consider our random walk model

Random walks are not stationary because 

27/70



Stationary AR(1) models

We can define a space over which all AR(1) models are stationary
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Stationary AR(1) models

For , we have
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Stationary AR(1) models

For , we have

For , we have
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Stationary AR(1) models

Thus, AR(1) models are stationary if and only if 
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Coefficients of AR(1) models

Same value, but different sign
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Coefficients of AR(1) models

Both positive, but different magnitude
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Autocorrelation function (ACF)

Recall that the autocorrelation function ( ) measures the correlation
between  and a shifted version of itself 
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ACF for AR(1) models

ACF oscillates for model with 
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ACF for AR(1) models

For model with large , ACF has longer tail

36/70



Partial autocorrelation funcion (PACF)

Recall that the partial autocorrelation function ( ) measures the
correlation between  and a shifted version of itself , with the
linear dependence of  removed
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ACF & PACF for AR(p) models
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PACF for AR(p) models

Do you see the link between the order p and lag k?
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Using ACF & PACF for model ID

Model ACF PACF

AR(p) Tails off slowly Cuts off after lag p
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Moving average (MA) models

Moving average models are most commonly used for forecasting a
future state
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Moving average (MA) models

A moving average model of order q, or MA(q), is defined as

where  is white noise

Each of the  is a sum of the most recent error terms
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Moving average (MA) models

A moving average model of order q, or MA(q), is defined as

where  is white noise

Each of the  is a sum of the most recent error terms

Thus, all MA processes are stationary because they are finite sums of
stationary WN processes
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Examples of MA(q) models
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Examples of MA(q) models
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AR(p) model as an MA( ) model

It is possible to write an AR(p) model as an MA( ) model
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AR(1) model as an MA( ) model

For example, consider an AR(1) model
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AR(1) model as an MA( ) model

If our AR(1) model is stationary, then

so
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Invertible MA(q) models

An MA(q) process is invertible if it can be written as a stationary
autoregressive process of infinite order without an error term
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Invertible MA(1) model

For example, consider an MA(1) model
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Invertible MA(1) model

If we constrain , then

and
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Invertible MA(q) models

Q: Why do we care if an MA(q) model is invertible?

A: It helps us identify the model's parameters
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Invertible MA(q) models

For example, these MA(1) models are equivalent
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ACF & PACF for MA(q) models
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ACF for MA(q) models

Do you see the link between the order q and lag k?
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Using ACF & PACF for model ID

Model ACF PACF

AR(p) Tails off slowly Cuts off after lag p

MA(q) Cuts off after lag q Tails off slowly
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Using ACF & PACF for model ID
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Autoregressive moving average models

An autoregressive moving average, or ARMA(p,q), model is written as
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Autoregressive moving average models

We can write an ARMA(p,q) model using the backshift operator

ARMA models are stationary if all roots of 

ARMA models are invertible if all roots of 
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Examples of ARMA(p,q) models
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ACF for ARMA(p,q) models
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PACF for ARMA(p,q) models
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Using ACF & PACF for model ID

Model ACF PACF

AR(p) Tails off slowly Cuts off after lag p

MA(q) Cuts off after lag q Tails off slowly

ARMA(p,q) Tails off slowly Tails off slowly
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NONSTATIONARY MODELS
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Autoregressive integrated moving average
(ARIMA) models

If the data do not appear stationary, differencing can help

This leads to the class of autoregressive integrated moving average
(ARIMA) models

ARIMA models are indexed with orders (p,d,q) where d indicates the
order of differencing
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ARIMA(p,d,q) models

For ,  is an ARIMA(p,d,q) process if  is an ARMA(p,q)
process
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ARIMA(p,d,q) models

For ,  is an ARIMA(p,d,q) process if  is an ARMA(p,q)
process

For example, if  is an ARIMA(1,1,0) process then  is an
ARMA(1,0) = AR(1) process
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ARIMA(p,d,q) models
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ARIMA(p,d,q) models
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