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Topics for today

Review

-+ White noise

- Random walks
Autoregressive (AR) models
Moving average (MA) models

Autoregressive moving average (ARMA) models

Using ACF & PACF for model ID
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White noise (WN)

A time series {w; } is discrete white noise if its values are

1. independent

2. identically distributed with a mean of zero

The distributional form for {w,} is flexible
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White noise (WN)
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Gaussian white noise

We often assume so-called Gaussian white noise, whereby

w ~ N, )
and the following apply as well
© 2 ifk=0

autocovariance:” | = { .
0 ifk>1

autocorrelation: * | = { 1 ?fk: 0
0O ifk>1
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Gaussian white noise
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Random walk (RW)

A time series {x;} is a random walk if
10X = X—1 + W

2. w; is white noise
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Random walk (RW)
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X; = X—1 + We; Wy ~ N(O, 1)
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Biased random walk

A biased random walk (or random walk with drift) is written as
Xi = X—1 +u+ W

where u is the bias (drift) per time step and w; is white noise
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Biased random walk
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X = X1 + 1 +wi;we ~ N(O, 1)
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Differencing a biased random walk

First-differencing a biased random walk yields a constant mean (level)
u plus white noise

Vxi = X1 +u+w;
Xt — Xg—1 = X—1 + U+ Wy — Xi—1
Xt — X—1 = U+ W
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Differencing a biased random walk
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X = X1 + 1 + wi;we ~ N(O, 1)
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LINEAR STATIONARY MODELS
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Linear stationary models

We saw last week that linear filters are a useful way of modeling time
series

Here we extend those ideas to a general class of models call
autoregressive moving average (ARMA) models
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Autoregressive (AR) models

Autoregressive models are widely used in ecology to treat a current
state of nature as a function its past state(s)
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Autoregressive (AR) models

An autoregressive model of order p, or AR(p), is defined as
X = 1X-1+ 2X-—2+ -+ pX—p+W
where we assume

1. w; is white noise

2. p # 0 for an order-p process
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Examples of AR(p) models

AR(T)

X = 0.5X—1 + W

AR(1) with | =1 (random walk)

X = Xi—1 + W

AR(2)

x = —0.2x_1 + 0.4x_2 + W,
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Examples of AR(p) models
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Stationary AR(p) models

Recall that stationary processes have the following properties

1. no systematic change in the mean or variance
2. No systematic trend
3. no periodic variations or seasonality

We seek a means for identifying whether our AR(p) models are also
stationary
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Stationary AR(p) models

We can write out an AR(p) model using the backshift operator

Xt = 1X-1T1T 2X-2 T+t '+ pX—pTW
\

Xt — 1Xe—1 — 2X=2 — *=* — pXe—p = Wi

(1- 1B— 2B* == B)x =w

. p(B)xe = wy
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Stationary AR(p) models

If we treat B as a number (or numbers), we can out write the
characteristic equation as

Cp(B)xe = w
Y
. pB)=0

To be stationary, all roots of the characteristic equation must exceed 1
in absolute value
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Stationary AR(p) models

For example, consider this AR(1) model from earlier

xe = 0.5%—1 + W
Xe — 0.5%-1 = wy
(1 —0.5B)x = wy
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Stationary AR(p) models

For example, consider this AR(1) model from earlier

Xt — ()HS)Q;_l + Wi
Xt — 0.5%X—1 = Wy

(1 -0.5B)x; =w;
2
1-05B=0
—0.5B = -1
B=2

This model is indeed stationary because B > 1
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Stationary AR(p) models

What about this AR(2) model from earlier?

xt = —0.2x—1 + 0.4x_> + W,
Xt + 0.2%-1 — 0.4X—2 = Wy
(1+0.2B - 0.4B%)x = w;
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Stationary AR(p) models

What about this AR(2) model from earlier?

Xt = —0.2x-1 + 0.4xc—2 + W
% +02x_1 —0.4x_0 = w,
(1+0.2B - 0.4B%)x = w;

\[’
1+02B—-04B?> =0

Y
B~ —-135and B ~ 1.85

This model is not stationary because only one B > 1
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What about random walks?

Consider our random walk model

X = X1 + W
X — X1 = W
(1= 1B)x = w
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What about random walks?

Consider our random walk model

X = X1 + W
X — X1 = W
(1 = 1IB)x = w
I
1-1B=0
—1B = -1
B=1

Random walks are not stationary because B =1 ¥ 1
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Stationary AR(1) models

We can define a space over which all AR(1) models are stationary
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Stationary AR(1) models

For x, = x_1 + W, we have

1— B=0
- B=—1

1
B=—>1=>0< <1
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Stationary AR(1) models

For x, = x_1 + W, we have

1- B=0
- B=—1
1
B=—>1=>0< <1
For xi = — x—1 + w, we have
1+ B=0
- B=-1

B=—>1=>-1< <0
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Stationary AR(1) models

Thus, AR(1) models are stationary ifand onlyif] | <1
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Coefficients of AR(1) models
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Coefficients of AR(1) models
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Both positive, but different magnitude
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Autocorrelation function (ACF)

Recall that the autocorrelation function { ) measures the correlation
between {x,} and a shifted version of itself {x.x }
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ACF for AR(1) models
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ACF for AR(1) models
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Partial autocorrelation funcion (PACF)

Recall that the partial autocorrelation function ( ) measures the
correlation between {x,} and a shifted version of itself {x.« }, with the
linear dependence of {x._1,X2,...,% k-1 } removed
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ACF & PACF for AR(p) models
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PACF for AR(p) models
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Using ACF & PACF for model ID

Model ACF PACF

AR(p) Tails off slowly Cuts off after lag p

40/70



Moving average (MA) models

Moving average models are most commonly used for forecasting a
future state
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Moving average (MA) models

A moving average model of order g, or MA(q), is defined as
X =W+ 1Wio) + oW + o+ Wieg
where w; is white noise

Each of the x; is a sum of the most recent error terms
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Moving average (MA) models

A moving average model of order g, or MA(qg), is defined as
X =W+ 1Wio) + oW + o+ gWieg
where w; is white noise

Each of the x; is a sum of the most recent error terms

Thus, all MA processes are stationary because they are finite sums of
stationary WN processes
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Examples of MA(q) models
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Examples of MA(q) models

MA(1): x;= w;+0.7 wy_q MA(2): x;= wi— Wi 1+0.7 wyp
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AR(p) model as an MA(co) model

It is possible to write an AR(p) model as an MA(c0) model
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AR(1) model as an MA(c0) model

For example, consider an AR(1) model

Xi—1 + Wt

(X2 Fwimr) +w

2
Xi—2 + W1 + W

2o K 2

= %3+ ‘Wi + Wl + W
x|

2 k k+1
X =W+ Wil £ W oo+ Wk T Xeked
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AR(1) model as an MA(co) model

If our AR(1) model is stationary, then

| 1<l = lim =0

SO

Xy = Wi + Wi—q + 2Wt_2 + .- + kWt_k + ket

U

Xt = Wt +. Wi—1 +. 2Wt_2 + --- +. kWt_k

1
Xt—k—1
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Invertible MA(g) models

An MA(q) process is invertible if it can be written as a stationary
autoregressive process of infinite order without an error term
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Invertible MA(1) model

For example, consider an MA(1) model

X = Wi+ Wi
J
Wi = Xp — Wil
Wi = X — (Xt—1 — Wi—2)

?

— ? 2
W =X — X—1 — W2

? 2 \k 2 (k41
Wi =X = X1+ () Xk + ()T Wik
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Invertible MA(1) model

If we constrain] | < 1, then

lim(2 Y*'w 1 =0

k— o0

and

Wi =% — X1+ o+ (2% + GO wie
N |2
2 ? k
Wi = X — Xi—1 + -+ (— ) Xe—k

(60)
We =X+ ) (2 ) ek
k=1
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Invertible MA(g) models

Q: Why do we care if an MA(g) model is invertible?

A: It helps us identify the model's parameters
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Invertible MA(g) models

For example, these MA(1) models are equivalent
1 .
X = Wi + th—l, with w¢ ~ N(O, 25)

X = Wt + 5w, with wy ~ N(O, 1)
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ACF & PACF for MA(g) models
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ACF for MA(q) models
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Do you see the link between the order g and lag k?
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Using ACF & PACF for model ID

Model ACF PACF
AR(p) Tails off slowly Cuts off after lag p
MA(q) Cuts off after lag g Tails off slowly
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Using ACF & PACF for model ID
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Autoregressive moving average models

An autoregressive moving average, or ARMA(p,q), model is written as

= (X1t pXe—p T+ W + 1Wi—1 + - + qWit—q
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Autoregressive moving average models

We can write an ARMA(p,q) model using the backshift operator
CpBx =" (B)w
ARMA models are stationary if all roots of ,(B) > 1

ARMA models are invertible if all roots of ((B) > 1
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Examples of ARMA(p,q) models

Xt

Xt

o N OBk O

ARMA(3,1): 1= 0.7, 4= 0.2, p3=-0.1, 8, = 0.5

| | | | | |

0 10 20 30 40 50
Time

ARMA(1,3): ¢ =0.7,0,=0.7,0,=0.2, 03 = 0.5

Time

X¢

Xt

ARMA(2,2): ¢; = -0.7, ¢ = 0.2, 6, = 0.7, 6, = 0.2

I I I I | I
0 10 20 30 40 50

Time
ARMA(2,2): ¢4 = 0.7, ¢, = 0.2, 06, =0.7, 0, = 0.2

Time

60/70



ACF for ARMA(p,q) models
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PACF for ARMA(p,q) models

Partial ACF

Partial ACF
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Using ACF & PACF for model ID

Model ACF PACF

AR(p) Tails off slowly Cuts off after lag p

MA(q) Cuts off after lag g Tails off slowly
ARMA(p,q) Tails off slowly Tails off slowly
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NONSTATIONARY MODELS
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Autoregressive integrated moving average
(ARIMA) models

If the data do not appear stationary, differencing can help

This leads to the class of autoregressive integrated moving average
(ARIMA) models

ARIMA models are indexed with orders (p,d,q) where d indicates the
order of differencing
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ARIMA(p,d,q) models

Ford > 0, {x.} is an ARIMA(p,d,q) process if (1 — B)dx, is an ARMA(p,q)
process
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ARIMA(p,d,q) models

Ford > 0, {x.} is an ARIMA(p,d,q) process if (1 — B)%x, is an ARMA(p,q)
process

For example, if {x;} is an ARIMA(1,1,0) process then V{x} is an
ARMA(1,0) = AR(1) process
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ARIMA(p,d,q) models
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ARIMA(p,d,q) models

ARIMA(1,1,0)
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Topics for today

Review

- White noise

- Random walks
Autoregressive (AR) models
Moving average (MA) models
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Using ACF & PACF for model ID
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