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Random walks

Backshift & difference operators

Expectation, mean & variance
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Expectation & the mean

The expectation ( ) of a variable is its mean value in the population

 mean of 

We can estimate  from a sample as
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Variance

 expected deviations of  about 

 variance of 

We can estimate  from a sample as
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Covariance

If we have two variables,  and , we can generalize variance

into covariance
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Covariance

If we have two variables,  and , we can generalize variance

into covariance

We can estimate  from a sample as
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Graphical example of covariance
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Graphical example of covariance
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Graphical example of covariance
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Correlation

Correlation is a dimensionless measure of the linear association
between 2 variables,  & 

It is simply the covariance standardized by the standard deviations
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Correlation

Correlation is a dimensionless measure of the linear association
between 2 variables  & 

It is simply the covariance standardized by the standard deviations

We can estimate  from a sample as
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Stationarity & the mean

Consider a single value, 
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Stationarity & the mean

Consider a single value, 

 is taken across an ensemble of all possible time series
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Stationarity & the mean
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Stationarity & the mean

Our single realization is our estimate!

15/68



Stationarity & the mean

If  is constant across time, we say the time series is stationary in
the mean
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Stationarity of time series

Stationarity is a convenient assumption that allows us to describe the
statistical properties of a time series.

In general, a time series is said to be stationary if there is

1. no systematic change in the mean or variance 

2. no systematic trend 

3. no periodic variations or seasonality
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Identifying stationarity
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Identifying stationarity

Our eyes are really bad at identifying stationarity, so we will learn some
tools to help us
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Autocovariance function (ACVF)

For stationary ts, we define the autocovariance function ( ) as

which means that
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Autocovariance function (ACVF)

For stationary ts, we define the autocovariance function ( ) as

"Smooth" series have large ACVF for large 

"Choppy" series have ACVF near 0 for small 
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Autocovariance function (ACVF)

For stationary ts, we define the autocovariance function ( ) as

We can estimate  from a sample as
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Autocorrelation function (ACF)

The autocorrelation function (ACF) is simply the ACVF normalized by the
variance

The ACF measures the correlation of a time series against a time-
shifted version of itself
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Autocorrelation function (ACF)

The autocorrelation function (ACF) is simply the ACVF normalized by the
variance

The ACF measures the correlation of a time series against a time-
shifted version of itself

We can estimate ACF from a sample as
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Properties of the ACF

The ACF has several important properties:

·

·

 of periodic function is itself periodic·

 for the sum of 2 independent variables is the sum of  for each of
them

·
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The correlogram

Graphical output for the ACF
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The correlogram

The ACF at lag = 0 is always 1
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The correlogram

Approximate confidence intervals
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ACF for deterministic forms
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ACF for deterministic forms
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ACF for deterministic forms

31/68



ACF for deterministic forms
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Induced autocorrelation

Recall the transitive property, whereby

If  and , then 
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Induced autocorrelation

Recall the transitive property, whereby

If  and , then 

which suggests that

If  and , then 
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Induced autocorrelation

Recall the transitive property, whereby

If  and , then 

which suggests that

If  and , then 

and thus

If  and , then 
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Partial autocorrelation funcion (PACF)

The partial autocorrelation function ( ) measures the correlation
between a series  and  with the linear dependence of 

 removed
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Partial autocorrelation funcion (PACF)

The partial autocorrelation function ( ) measures the correlation
between a series  and  with the linear dependence of 

 removed

We can estimate  from a sample as
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Lake Washington phytoplankton
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Lake Washington phytoplankton

Autocorrelation
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Lake Washington phytoplankton

Partial autocorrelation
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ACF & PACF in model selection

The ACF & PACF will be very useful for identifying the orders of ARMA
models
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Cross-covariance function (CCVF)

Often we want to look for relationships between 2 different time series

We can extend the notion of covariance to cross-covariance
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Cross-covariance function (CCVF)

Often we want to look for relationships between 2 different time series

We can extend the notion of covariance to cross-covariance

We can estimate  from a sample as
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Cross-correlation function (CCF)

The cross-correlation function is the CCVF normalized by the standard
deviations of x & y

Just as with other measures of correlation
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Example of cross-correlation
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SOME SIMPLE MODELS
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White noise (WN)

A time series  is discrete white noise if its values are

1. independent

2. identically distributed with a mean of zero
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White noise (WN)

A time series  is discrete white noise if its values are

Note that distributional form for  is flexible

1. independent

2. identically distributed with a mean of zero
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White noise (WN)
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Gaussian white noise

We often assume so-called Gaussian white noise, whereby
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Gaussian white noise

We often assume so-called Gaussian white noise, whereby

and the following apply as well

    autocovariance:  

    autocorrelation:   
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Gaussian white noise
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Random walk (RW)

A time series  is a random walk if

1. 

2.  is white noise
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Random walk (RW)

The following apply to random walks

    mean:   

    autocovariance:   

    autocorrelation:   
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Random walk (RW)

The following apply to random walks

    mean:   

    autocovariance:   

    autocorrelation:   

Note: Random walks are not stationary
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Random walk (RW)
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SOME IMPORTANT OPERATORS
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The backshift shift operator

The backshift shift operator ( ) is an important function in time series
analysis, which we define as

or more generally as
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The backshift shift operator

For example, a random walk with

can be written as
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The difference operator

The difference operator ( ) is another important function in time series
analysis, which we define as
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The difference operator

The difference operator ( ) is another important function in time series
analysis, which we define as

For example, first-differencing a random walk yields white noise
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The difference operator

The difference operator and the backshift operator are related
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The difference operator

The difference operator and the backshift operator are related

For example
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Differencing to remove a trend

Differencing is a simple means for removing a trend

The 1st-difference removes a linear trend; a 2nd-difference would
remove a quadratic trend, etc.
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Differencing to remove a trend
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Differencing to remove seasonality

Differencing is a simple means for removing a seasonal effect

Using a 1st-difference with  removes both trend & seasonal
effects
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Differencing to remove seasonality
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