Stationarity & introductory functions
FISH 507 - Applied Time Series Analysis

Mark Scheuerell
10 Jan 2019



Topics for today

Characteristics of time series

Expectation, mean & variance
Covariance & correlation

- Stationarity
- Autocovariance & autocorrelation

Correlograms
White noise
Random walks

Backshift & difference operators
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Expectation & the mean

The expectation (E) of a variable is its mean value in the population
E(x) = meanofx =pu

We can estimate y from a sample as

Zé\il Xi

N

3/68



Variance

E([x — u]?) = expected deviations of x about u
E([x — u]?) = variance of x = ¢?

We can estimate ¢? from a sample as

1 N
2 _ N2
s = N1 izzl (x; —m)
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Covariance

If we have two variables, x and y, we can generalize variance

o = B(lx; — pllx; — )

into covariance

Yxy = E(lx; — puxllyi — //ty])
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Covariance

If we have two variables, x and y, we can generalize variance

o = E([x; — pllx; — )

iNnto covariance
Yxy = E(lx; — puxllyi — //ty])

We can estimate y,, from a sample as

1 N
Cov(x,y) = ﬁ Z (xi — mx)(yi - my)
i=1
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Graphical example of covariance
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Graphical example of covariance
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Graphical example of covariance
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Correlation

Correlation is a dimensionless measure of the linear association
between 2 variables, x &y

It is simply the covariance standardized by the standard deviations

Vx,y

Pxy =
Ox Oy

_1 <px,y <1
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Correlation

Correlation is a dimensionless measure of the linear association
between 2 variables x & y

It is simply the covariance standardized by the standard deviations

Vx,y

Pxy =
Ox Oy

We can estimate p,, from a sample as

Cov(x,y)

Cor(x,y) = .
xSy
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Stationarity & the mean

Consider a single value, x,
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Stationarity & the mean

Consider a single value, x;

E(x,) is taken across an ensemble of all possible time series

13/68



Stationarity & the mean
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Stationarity & the mean
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Our single realization is our estimate!
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Stationarity & the mean

If E(x;) is constant across time, we say the time series is stationary in
the mean
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Stationarity of time series

Stationarity is a convenient assumption that allows us to describe the
statistical properties of a time series.

In general, a time series is said to be stationary if there is

1. no systematic change in the mean or variance
2. No systematic trend

3. no periodic variations or seasonality
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|dentifying stationarity
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Identifying stationarity

Our eyes are really bad at identifying stationarity, so we will learn some
tools to help us
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Autocovariance function (ACVF)

For stationary ts, we define the autocovariance function (y;) as

vk = B([x; — pllxesn — pl)

which means that

vo = B([x, — pllx, — ul) = o°
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Autocovariance function (ACVF)

For stationary ts, we define the autocovariance function (y;) as
vk = E([x: — pll Xk — p])
"Smooth" series have large ACVF for large k

"Choppy" series have ACVF near O for small &
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Autocovariance function (ACVF)

For stationary ts, we define the autocovariance function (y;) as

vk = B([x; — pllxesx — pl)

We can estimate y; from a sample as

1 N—k
= Z:, O — m)(Xrpx — m)
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Autocorrelation function (ACF)

The autocorrelation function (ACF) is simply the ACVF normalized by the
variance

Yk Yk
,Dk — —2 = —
o 70

The ACF measures the correlation of a time series against a time-
shifted version of itself
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Autocorrelation function (ACF)

The autocorrelation function (ACF) is simply the ACVF normalized by the
variance

Yk Yk
,Dk — —2 = —
o 70

The ACF measures the correlation of a time series against a time-
shifted version of itself

We can estimate ACF from a sample as

Ck
oy

ry =
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Properties of the ACF

The ACF has several important properties:
* —-1<rn <1

Iy =Tk

* 1, of periodic function is itself periodic

* 1, for the sum of 2 independent variables is the sum of r, for each of
them
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The correlogram
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The correlogram
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The correlogram
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ACF for deterministic forms
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ACF for deterministic forms
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ACF for deterministic forms

Linear trend + seasonal effect
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ACF for deterministic forms

Sequence of 10 random numbers repeated 10 times
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Induced autocorrelation

Recall the transitive property, whereby

fA=BandB=C,thenA =C
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Induced autocorrelation

Recall the transitive property, whereby
IfA=BandB=C,thenA=C
which suggests that

fxxyandy «z thenx « z
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Induced autocorrelation

Recall the transitive property, whereby
fA=BandB=C,thenA=C

which suggests that

Ifx xyandy « z, then x « z

and thus

Ifxt X X1 and X1 X Xpg2, then X X X¢12
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Partial autocorrelation funcion (PACF)

The partial autocorrelation function (¢,) measures the correlation
between a series x; and x;; with the linear dependence of
{X—1,X1—2, ..., Xi—x—1 } removed
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Partial autocorrelation funcion (PACF)

The partial autocorrelation function (¢,) measures the correlation

between a series x; and x;; with the linear dependence of
{X—1,X1—2, ..., Xi—x—1 } removed

We can estimate ¢, from a sample as

Cor(x1,x0) = p1 k=1
P = _ k-1 _ k-1 -
Cor(xy —x; ,x0 —xy, ) itk>2

X7 = Pt + faxi—a + 0 + o1y

X0 L= Prx1 + Poxa + oo + Pr—1Xk—1
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Lake Washington phytoplankton
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Lake Washington phytoplankton
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Lake Washington phytoplankton
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ACF & PACF in model selection

The ACF & PACF will be very useful for identifying the orders of ARMA
models
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Cross-covariance function (CCVF)

Often we want to look for relationships between 2 different time series

We can extend the notion of covariance to cross-covariance
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Cross-covariance function (CCVF)

Often we want to look for relationships between 2 different time series

We can extend the notion of covariance to cross-covariance

We can estimate g, from a sample as

N—
x 1
gky — N Z — M) Ytk — my)
=1
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Cross-correlation function (CCF)

The cross-correlation function is the CCVF normalized by the standard
deviations of x &y

X,y
8k

Sx Sy

XY
l"k =

Just as with other measures of correlation

-1<r7 <1
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Example of cross-correlation
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SOME SIMPLE MODELS
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White noise (WN)

A time series {w;} is discrete white noise if its values are

1. independent

2. identically distributed with a mean of zero
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White noise (WN)

A time series {w;} is discrete white noise if its values are

1. independent

2. identically distributed with a mean of zero

Note that distributional form for {w,} is flexible
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White noise (WN)
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w; = 2¢; — 1;e; ~ Bernoulli(0.5)
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Gaussian white noise

We often assume so-called Gaussian white noise, whereby

w, ~ N(0, 6?)
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Gaussian white noise

We often assume so-called Gaussian white noise, whereby

w; ~ N(0, %)
and the following apply as well
c* ifk=0

autocovariance: y; = { .
0 ifk>1

autocorrelation: p; = { Iifke=0
0 ifk>1
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Gaussian white noise
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Random walk (RW)

A time series {x;} is a random walk if
1..xt = X;—1 + Wy

2. w, is white noise
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Random walk (RW)

The following apply to random walks
mean: u, =0
autocovariance: yi(t) = to?

. 2
autocorrelation: pi(f) = —Z2

\/to2(t+k)c?
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Random walk (RW)

The following apply to random walks
mean: u, =0

autocovariance: yi(t) = to?

. 2
autocorrelation: pi(f) = —2

\/to2(t+k)o?

Note: Random walks are not stationary
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Random walk (RW)
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SOME IMPORTANT OPERATORS
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The backshift shift operator

The backshift shift operator (B) is an important function in time series
analysis, which we define as

Bx; = x4
or more generally as

k
B x; = Xk
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The backshift shift operator

For example, a random walk with
Xt = Xp—1 + Wy

can be written as

Xt = 13X& + Wy
Xt — I;Xk = W;
(I =B)x; =w;

x = (1 =B)"tw,
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The difference operator

The difference operator (V) is another important function in time series
analysis, which we define as

VX = X — X1
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The difference operator

The difference operator (V) is another important function in time series
analysis, which we define as

VX = X — X1
For example, first-differencing a random walk yields white noise

‘7X} = X;—1 + Wy
Xt — Xt—1 = Xt—1 + Wr — X—1

Xt — Xt—1 = Wy
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The difference operator

The difference operator and the backshift operator are related

VE = (1 - B)
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The difference operator

The difference operator and the backshift operator are related
VE=(1-B)
For example

Vx; = (1 —B)x;
Xt — Xt—1 = Xy — B-xt

Xt — Xp—1 = Xp — Xp—1
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Differencing to remove a trend

Differencing is a simple means for removing a trend

The 1st-difference removes a linear trend; a 2nd-difference would
remove a quadratic trend, etc.
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Differencing to remove a trend
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Differencing to remove seasonality

Differencing is a simple means for removing a seasonal effect

Using a 1st-difference with k = period removes both trend & seasonal
effects
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Differencing to remove seasonality
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Topics for today

Characteristics of time series

Expectation, mean & variance
Covariance & correlation

- Stationarity
- Autocovariance & autocorrelation

Correlograms
White noise
Random walks

Backshift & difference operators
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