
1

Fitting multivariate state-space models with
covariates

A MARSS model with covariate effects in both the process and observation
components is written as:

xt = Btxt−1 + ut + Ctct + wt , where wt ∼ MVN(0,Qt)

yt = Ztxt + at + Dtdt + vt , where vt ∼ MVN(0,Rt)
(1.1)

where ct is the p× 1 vector of covariates (e.g., temperature, rainfall) which
affect the states and dt is a q×1 vector of covariates (potentially the same as
ct), which affect the observations. Ct is an m× p matrix of coefficients relating
the effects of ct to the m× 1 state vector xt , and Dt is an n× q matrix of
coefficients relating the effects of dt to the n×1 observation vector yt .

With the MARSS() function, one can fit this model by passing in model$c

and/or model$d in the model argument as a p×T or q×T matrix, respectively.
The form for Ct and Dt is similarly specified by passing in model$C and/or
model$D. C and D are matrices and are specified as 2-dimensional matrices as
you would other parameter matrices.

1.1 Examples using plankton data

Here we show some examples using the Lake Washington plankton data set
and covariates in that dataset. We use the 10 years of data from 1965-1974
(Figure 1.1), a decade with particularly high green and bluegreen algae levels.
We use the transformed plankton dataset which has 0s replaced with NAs.
Below, we set up the data and z-score the data. The original data were already
z-scored, but we changed the mean when we subsampled the years so need to
z-score again.

fulldat = lakeWAplanktonTrans

years = fulldat[,"Year"]>=1965 & fulldat[,"Year"]<1975

dat = t(fulldat[years,c("Greens", "Bluegreens")])

2 1 MARSS with covariates

the.mean = apply(dat,1,mean,na.rm=TRUE)

the.sigma = sqrt(apply(dat,1,var,na.rm=TRUE))

dat = (dat-the.mean)*(1/the.sigma)

Next we set up the covariate data, temperature and total phosphorous. We
z-score the covariates to standardize and remove the mean.

covariates = rbind(

Temp = fulldat[years,"Temp"],

TP = fulldat[years,"TP"])

z.score the covariates

the.mean = apply(covariates,1,mean,na.rm=TRUE)

the.sigma = sqrt(apply(covariates,1,var,na.rm=TRUE))

covariates = (covariates-the.mean)*(1/the.sigma)

−
3

−
1

1
2

G
re

en
s

−
2

−
1

0
1

2

B
lu

eg
re

en
s

−
1

0
1

Te
m

p

−
1

1
2

3
4

1966 1968 1970 1972 1974

T
P

Time

Fig. 1.1. Time series of Green and Bluegreen algae abundances in Lake Washington
along with the temperature and total phosporous covariates.

1.2 Observation-error only model 3

1.2 Observation-error only model

We can estimate the effect of the covariates using a process-error only model,
an observation-error only model, or a model with both types of error. An
observation-error only model is a multivariate regression, and we will start
here so you see the relationship of MARSS model to more familiar linear
regression models.

In a standard multivariate linear regression, we only have an observation
model with independent errors (i.e., the state process does not appear in the
model):

yt = a + Ddt + vt , where vt ∼ MVN(0,R) (1.2)

The elements in a are the intercepts and those in D are the slopes (effects).
We have dropped the t subscript on a and D because these will be modeled as
time-constant. Writing this out for the two plankton and the two covariates
we get: [

yg
ybg

]
t
=

[
a1
a2

]
+

[
βg,temp βg,tp
βbg,temp βbg,tp

][
temp

tp

]
t−1

+

[
v1
v2

]
t

(1.3)

Let’s fit this model with MARSS. The x part of the model is irrelevant so
we want to fix the parameters in that part of the model. We won’t set B = 0
or Z = 0 since that might cause numerical issues for the Kalman filter. Instead
we fix them as identity matrices and fix x0 = 0 so that xt = 0 for all t.

Q = U = x0 = "zero"; B = Z = "identity"

d = covariates

A = "zero"

D = "unconstrained"

y = dat # to show relationship between dat & the equation

model.list = list(B=B,U=U,Q=Q,Z=Z,A=A,D=D,d=d,x0=x0)

kem = MARSS(y, model=model.list)

Success! algorithm run for 15 iterations. abstol and log-log tests passed.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Algorithm ran 15 (=minit) iterations and convergence was reached.

Log-likelihood: -276.4287

AIC: 562.8573 AICc: 563.1351

Estimate

R.diag 0.706

D.(Greens,Temp) 0.367

4 1 MARSS with covariates

D.(Bluegreens,Temp) 0.392

D.(Greens,TP) 0.058

D.(Bluegreens,TP) 0.535

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

We set A="zero" because the data and covariates have been demeaned. Of
course, one can do multiple regression in R using, say, lm(), and that would
be much, much faster. The EM algorithm is over-kill here, but it is shown so
that you see how a standard multivariate linear regression model is written as
a MARSS model in matrix form.

1.3 Process-error only model

Now let’s model the data as an autoregressive process observed without er-
ror, and incorporate the covariates into the process model. Note that this is
much different from typical linear regression models. The x part represents
our model of the data (in this case plankton species). How is this different
from the autoregressive observation errors? Well, we are modeling our data
as autoregressive so data at t −1 affects the data at t. Population abundances
are inherently autoregressive so this model is a bit closer to the underlying
mechanism generating the data. Here is our new process model for plankton
abundance.

xt = xt−1 + Cct + wt , where wt ∼ MVN(0,Q) (1.4)

We can fit this as follows:

R = A = U = "zero"; B = Z = "identity"

Q = "equalvarcov"

C = "unconstrained"

model.list = list(B=B,U=U,Q=Q,Z=Z,A=A,R=R,C=C,c=covariates)

kem = MARSS(dat, model=model.list)

Success! algorithm run for 15 iterations. abstol and log-log tests passed.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Algorithm ran 15 (=minit) iterations and convergence was reached.

Log-likelihood: -285.0732

AIC: 586.1465 AICc: 586.8225

1.3 Process-error only model 5

Estimate

Q.diag 0.7269

Q.offdiag -0.0210

x0.X.Greens -0.5189

x0.X.Bluegreens -0.2431

C.(X.Greens,Temp) -0.0434

C.(X.Bluegreens,Temp) 0.0988

C.(X.Greens,TP) -0.0589

C.(X.Bluegreens,TP) 0.0104

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

Now, it looks like temperature has a strong negative effect on algae? Also our
log-likelihood dropped a lot. Well, the data do not look at all like a random
walk model (i.e., where B = 1), which we can see from the plot of the data
(Figure 1.1). The data are fluctuating about some mean so let’s switch to
a better autoregressive model—a mean-reverting model. To do this, we will
allow the diagonal elements of B to be something other than 1.

model.list$B = "diagonal and unequal"

kem = MARSS(dat, model=model.list)

Success! algorithm run for 15 iterations. abstol and log-log tests passed.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Algorithm ran 15 (=minit) iterations and convergence was reached.

Log-likelihood: -236.6106

AIC: 493.2211 AICc: 494.2638

Estimate

B.(X.Greens,X.Greens) 0.1981

B.(X.Bluegreens,X.Bluegreens) 0.7672

Q.diag 0.4899

Q.offdiag -0.0221

x0.X.Greens -1.2915

x0.X.Bluegreens -0.4179

C.(X.Greens,Temp) 0.2844

C.(X.Bluegreens,Temp) 0.1655

C.(X.Greens,TP) 0.0332

C.(X.Bluegreens,TP) 0.1340

6 1 MARSS with covariates

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

Notice that the log-likelihood goes up quite a bit, which means that the mean-
reverting model fits the data much better.

With this model, we are estimating x0. If we set model$tinitx=1, we
will get a error message that R diagonals are equal to 0 and we need to fix
x0. Because R = 0, if we set the initial states at t = 1, then they are fully
determined by the data.

x0 = dat[,1,drop=FALSE]

model.list$tinitx = 1

model.list$x0 = x0

kem = MARSS(dat, model=model.list)

Success! algorithm run for 15 iterations. abstol and log-log tests passed.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Algorithm ran 15 (=minit) iterations and convergence was reached.

Log-likelihood: -235.4827

AIC: 486.9653 AICc: 487.6414

Estimate

B.(X.Greens,X.Greens) 0.1980

B.(X.Bluegreens,X.Bluegreens) 0.7671

Q.diag 0.4944

Q.offdiag -0.0223

C.(X.Greens,Temp) 0.2844

C.(X.Bluegreens,Temp) 0.1655

C.(X.Greens,TP) 0.0332

C.(X.Bluegreens,TP) 0.1340

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

1.4 Both process- and observation-error

Here is an example where we have both process and observation error but the
covariates only affect the process:

xt = Bxt−1 + Ctct + wt , where wt ∼ MVN(0,Q)

yt = xt−1 + vt , where vt ∼ MVN(0,R),
(1.5)

1.4 Both process- and observation-error 7

x is the true algae abundances and y is the observation of the x’s.
Let’s say we knew that the observation variance on the algae measurements

was about 0.16 and we wanted to include that known value in the model. To
do that, we can simply add R to the model list from the process-error only
model in the last example.

D = d = A = U = "zero"; Z = "identity"

B = "diagonal and unequal"

Q = "equalvarcov"

C = "unconstrained"

c=covariates

R = diag(0.16,2)

x0 = "unequal"

tinitx=1

model.list = list(B=B,U=U,Q=Q,Z=Z,A=A,R=R,D=D,d=d,C=C,c=c,x0=x0,tinitx=tinitx)

kem = MARSS(dat, model=model.list)

Success! abstol and log-log tests passed at 36 iterations.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Estimation converged in 36 iterations.

Log-likelihood: -240.3694

AIC: 500.7389 AICc: 501.7815

Estimate

B.(X.Greens,X.Greens) 0.30848

B.(X.Bluegreens,X.Bluegreens) 0.76101

Q.diag 0.33923

Q.offdiag -0.00411

x0.X.Greens -0.52614

x0.X.Bluegreens -0.32836

C.(X.Greens,Temp) 0.23790

C.(X.Bluegreens,Temp) 0.16991

C.(X.Greens,TP) 0.02505

C.(X.Bluegreens,TP) 0.14183

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

Note, our estimates of the effect of temperature and total phosphorous are
not that different than what you get from a simple multiple regression (our
first example). This might be because the autoregressive component is small,
meaning the estimated diagonals on the B matrix are small.

8 1 MARSS with covariates

Here is an example where we have both process and observation error but
the covariates only affect the observation process:

xt = Bxt−1 + wt , where wt ∼ MVN(0,Q)

yt = xt−1 + Ddtvt , where vt ∼ MVN(0,R),
(1.6)

x is the true algae abundances and y is the observation of the x’s.

C = c = A = U = "zero"; Z = "identity"

B = "diagonal and unequal"

Q = "equalvarcov"

D = "unconstrained"

d=covariates

R = diag(0.16,2)

x0 = "unequal"

tinitx=1

model.list = list(B=B,U=U,Q=Q,Z=Z,A=A,R=R,D=D,d=d,C=C,c=c,x0=x0,tinitx=tinitx)

kem = MARSS(dat, model=model.list)

Success! abstol and log-log tests passed at 45 iterations.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Estimation converged in 45 iterations.

Log-likelihood: -239.5879

AIC: 499.1759 AICc: 500.2185

Estimate

B.(X.Greens,X.Greens) 0.428

B.(X.Bluegreens,X.Bluegreens) 0.859

Q.diag 0.314

Q.offdiag -0.030

x0.X.Greens -0.121

x0.X.Bluegreens -0.119

D.(Greens,Temp) 0.373

D.(Bluegreens,Temp) 0.276

D.(Greens,TP) 0.042

D.(Bluegreens,TP) 0.115

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

1.5 Including seasonal effects in MARSS models 9

1.5 Including seasonal effects in MARSS models

Time-series data are often collected at intervals with some implicit “seasonal-
ity.” For example, quarterly earnings for a business, monthly rainfall totals, or
hourly air temperatures. In those cases, it is often helpful to extract any recur-
ring seasonal patterns that might otherwise mask some of the other temporal
dynamics we are interested in examining.

Here we show a few approaches for including seasonal effects using the
Lake Washington plankton data, which were collected monthly. The following
examples will use all five phytoplankton species from Lake Washington. First,
let’s set up the data.

years = fulldat[,"Year"]>=1965 & fulldat[,"Year"]<1975

phytos = c("Diatoms", "Greens", "Bluegreens",

"Unicells", "Other.algae")

dat = t(fulldat[years,phytos])

z.score data because we changed the mean when we subsampled

the.mean = apply(dat,1,mean,na.rm=TRUE)

the.sigma = sqrt(apply(dat,1,var,na.rm=TRUE))

dat = (dat-the.mean)*(1/the.sigma)

number of time periods/samples

TT = dim(dat)[2]

1.5.1 Seasonal effects as fixed factors

One common approach for estimating seasonal effects is to treat each one
as a fixed factor, such that the number of parameters equals the number of
“seasons” (e.g., 24 hours per day, 4 quarters per year). The plankton data are
collected monthly, so we will treat each month as a fixed factor. To fit a model
with fixed month effects, we create a 12 × T covariate matrix c with one row
for each month (Jan, Feb, ...) and one column for each time point. We put a
1 in the January row for each column corresponding to a January time point,
a 1 in the February row for each column corresponding to a February time
point, and so on. All other values of c equal 0. The following code will create
such a c matrix.

number of "seasons" (e.g., 12 months per year)

period = 12

first "season" (e.g., Jan = 1, July = 7)

per.1st = 1

create factors for seasons

c.in = diag(period)

for(i in 2:(ceiling(TT/period))) {c.in = cbind(c.in,diag(period))}

trim c.in to correct start & length

c.in = c.in[,(1:TT)+(per.1st-1)]

better row names

rownames(c.in) = month.abb

10 1 MARSS with covariates

Next we need to set up the form of the C matrix which defines any con-
straints we want to set on the month effects. C is a 5×12 matrix. Five taxon
and 12 month effects. If we wanted each taxon to have the same month effect,
i.e. there is a common month effect across all taxon, then we have the same
value in each C column1:

C = matrix(month.abb,5,12,byrow=TRUE)

C

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep"

[2,] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep"

[3,] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep"

[4,] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep"

[5,] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep"

[,10] [,11] [,12]

[1,] "Oct" "Nov" "Dec"

[2,] "Oct" "Nov" "Dec"

[3,] "Oct" "Nov" "Dec"

[4,] "Oct" "Nov" "Dec"

[5,] "Oct" "Nov" "Dec"

Notice, that C only has 12 values in it, the 12 common month effects. However,
for this example, we will let each taxon have a different month effect thus
allowing different seasonality for each taxon. For this model, we want each
value in C to be unique:

C = "unconstrained"

Now C has 5 × 12 = 60 separate effects.
Then we set up the form for the rest of the model parameters. We make

the following assumptions:

Each taxon has unique density-dependence

B = "diagonal and unequal"

Assume independent process errors

Q = "diagonal and unequal"

We have demeaned the data & are fitting a mean-reverting model

by estimating a diagonal B, thus

U = "zero"

Each obs time series is associated with only one process

Z = "identity"

The data are demeaned & fluctuate around a mean

A = "zero"

We assume observation errors are independent, but they

have similar variance due to similar collection methods

1 month.abb is a R constant that gives month abbreviations in text.

1.5 Including seasonal effects in MARSS models 11

R = "diagonal and equal"

We are not including covariate effects in the obs equation

D = "zero"

d = "zero"

Now we can set up the model list for MARSS and fit the model (results
are not shown since they are verbose with 60 different month effects).

model.list = list(B=B,U=U,Q=Q,Z=Z,A=A,R=R,C=C,c=c.in,D=D,d=d)

seas.mod.1 = MARSS(dat,model=model.list,control=list(maxit=1500))

Get the estimated seasonal effects

rows are taxa, cols are seasonal effects

seas.1 = coef(seas.mod.1,type="matrix")$C

rownames(seas.1) = phytos

colnames(seas.1) = month.abb

The top panel in Figure 1.2 shows the estimated seasonal effects for this
model. Note that if we had set U=”unequal”, we would need to set one of the
columns of C to zero because the model would be under-determined (infinite
number of solutions). If we substracted the mean January abundance off each
time series, we could set the January column in C to 0 and get rid of 5
estimated effects.

1.5.2 Seasonal effects as a polynomial

The fixed factor approach required estimating 60 effects. Another approach is
to model the month effect as a 3rd-order (or higher) polynomial: a + b×m +
c×m2 +d×m3 where m is the month number. This approach has less flexibil-
ity but requires only 20 estimated parameters (i.e., 4 regression parameters
times 5 taxa). To do so, we create a 4 × T covariate matrix c with the rows
corresponding to 1, m, m2, and m3, and the columns again corresponding to
the time points. Here is how to set up this matrix:

number of "seasons" (e.g., 12 months per year)

period = 12

first "season" (e.g., Jan = 1, July = 7)

per.1st = 1

order of polynomial

poly.order = 3

create polynomials of months

month.cov = matrix(1,1,period)

for(i in 1:poly.order) {month.cov = rbind(month.cov,(1:12)^i)}

our c matrix is month.cov replicated once for each year

c.m.poly = matrix(month.cov, poly.order+1, TT+period, byrow=FALSE)

trim c.in to correct start & length

c.m.poly = c.m.poly[,(1:TT)+(per.1st-1)]

Everything else remains the same as in the previous example

12 1 MARSS with covariates

model.list = list(B=B,U=U,Q=Q,Z=Z,A=A,R=R,C=C,c=c.m.poly,D=D,d=d)

seas.mod.2 = MARSS(dat, model=model.list, control=list(maxit=1500))

The effect of month m for taxon i is ai +bi ×m+ci ×m2 +di ×m3, where ai, bi,
ci and di are in the i-th row of C. We can now calculate the matrix of seasonal
effects as follows, where each row is a taxon and each column is a month:

C.2 = coef(seas.mod.2,type="matrix")$C

seas.2 = C.2 %*% month.cov

rownames(seas.2) = phytos

colnames(seas.2) = month.abb

The middle panel in Figure 1.2 shows the estimated seasonal effects for this
polynomial model.

1.5.3 Seasonal effects as a Fourier series

The factor approach required estimating 60 effects, and the 3rd order polyno-
mial model was an improvement at only 20 parameters. A third option is to
use a discrete Fourier series, which is combination of sine and cosine waves; it
would require only 10 parameters. Specifically, the effect of month m on taxon
i is ai × cos(2πm/p)+ bi × sin(2πm/p), where p is the period (e.g., 12 months,
4 quarters), and ai and bi are contained in the i-th row of C.

We begin by defining the 2 × T seasonal covariate matrix c as a combi-
nation of 1 cosine and 1 sine wave:

cos.t = cos(2 * pi * seq(TT) / period)

sin.t = sin(2 * pi * seq(TT) / period)

c.Four = rbind(cos.t,sin.t)

Everything else remains the same and we can fit this model as follows:

model.list = list(B=B,U=U,Q=Q,Z=Z,A=A,R=R,C=C,c=c.Four,D=D,d=d)

seas.mod.3 = MARSS(dat, model=model.list, control=list(maxit=1500))

We make our seasonal effect matrix as follows:

C.3 = coef(seas.mod.3, type="matrix")$C

The time series of net seasonal effects

seas.3 = C.3 %*% c.Four[,1:period]

rownames(seas.3) = phytos

colnames(seas.3) = month.abb

The bottom panel in Figure 1.2 shows the estimated seasonal effects for this
seasonal-effects model based on a discrete Fourier series.

Rather than rely on our eyes to judge model fits, we should formally assess
which of the 3 approaches offers the most parsimonious fit to the data. Here
is a table of AICc values for the 3 models:

1.5 Including seasonal effects in MARSS models 13

−
0.

5
0.

0
0.

5
1.

0

F
ix

ed
 m

on
th

ly

Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

Diatoms
Greens
Bluegreens
Unicells
Other.algae

−
0.

8
−

0.
4

0.
0

0.
4

C
ub

ic

Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

Diatoms
Greens
Bluegreens
Unicells
Other.algae

−
0.

4
0.

0
0.

4

F
ou

rie
r

Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

Diatoms
Greens
Bluegreens
Unicells
Other.algae

Fig. 1.2. Estimated monthly effects for the three approaches to estimating seasonal
effects. Top panel: each month modelled as a separate fixed effect for each taxon (60
parameters); Middle panel: monthly effects modelled as a 3rd order polynomial (20
parameters); Bottom panel: monthly effects modelled as a discrete Fourier series (10
parameters).

data.frame(Model=c("Fixed", "Cubic", "Fourier"),

AICc=round(c(seas.mod.1$AICc,

seas.mod.2$AICc,

seas.mod.3$AICc),1))

Model AICc

1 Fixed 1188.4

2 Cubic 1144.9

3 Fourier 1127.4

The model selection results indicate that the model with monthly seasonal
effects estimated via the discrete Fourier sequence is the best of the 3 mod-
els. Its AICc value is much lower than either the polynomial or fixed-effects
models.

14 1 MARSS with covariates

1.6 Model diagnostics

We will examine some basic model diagnostics for these three approaches by
looking at plots of the model residuals and their autocorrelation functions
(ACFs) for all five taxa using the following code:

for(i in 1:3) {

dev.new()

modn = paste("seas.mod",i,sep=".")

for(j in 1:5) {

plot.ts(residuals(get(modn))$model.residuals[j,],

ylab="Residual", main=phytos[j])

abline(h=0, lty="dashed")

acf(residuals(get(modn))$model.residuals[j,])

}

}

1.6 Model diagnostics 15

i = 3; #Fourier

j = 1; #First state

par(mfrow=c(2,1))

modn = paste("seas.mod",i,sep=".")

plot.ts(residuals(get(modn))$model.residuals[j,],

ylab="Residual", main=phytos[j])

abline(h=0, lty="dashed")

acf(residuals(get(modn))$model.residuals[j,])

Diatoms

Time

R
es

id
ua

l

0 20 40 60 80 100 120

−
1.

0
0.

0
1.

0

0 5 10 15 20

−
0.

2
0.

4
1.

0

Lag

A
C

F

Series residuals(get(modn))$model.residuals[j,]

Fig. 1.3. Residuals for model with season modelled as a discrete Fourier series.

16 1 MARSS with covariates

Problems

For these problems, use the following code to load in phytoplankton data,
covariates, and z-score all the data. Then use dat and covars directly in your
code.

phytos = c("Cryptomonas", "Diatoms", "Greens",

"Unicells", "Other.algae")

yrs = lakeWAplanktonTrans[,"Year"]%in%1985:1994

dat = t(lakeWAplanktonTrans[yrs,phytos])

prec = diag(1/sqrt(apply(dat, 1, var, na.rm=TRUE)))

avg = apply(dat, 1, mean, na.rm=TRUE)

dat = prec %*% (dat-avg)

rownames(dat) = phytos

covars = rbind(Temp=lakeWAplanktonTrans[yrs,"Temp"],

TP=lakeWAplanktonTrans[yrs,"TP"])

prec = diag(1/sqrt(apply(covars, 1, var)))

avg = apply(covars, 1, mean)

covars = prec %*% (covars-avg)

rownames(covars) = c("Temp","TP")

Here are some guidelines to help you answer the questions:

� Use a MARSS model that allows for both observation and process error.
� Assume that the observation errors are independent and identically dis-

tributed. You can further assume that any process errors are independent
from one another, but the variances differ by taxon.

� Assume that each group is an observation of its own process. This means
Z="identity".

� Use B="diagonal and unequal". This implies that each of the taxa are
operating under varying degrees of density-dependence, and that they do
not interact with any of the other taxa.

� All the data have been de-meaned and Z identity, therefore use U="zero"

and A="zero".
� Include a plot of residuals versus time and acf of residuals for each ques-

tion.
� Use AICc to compare models.

1.1 How does month affect the mean phytoplankton population growth rates?
Show a plot of mean growth rate versus month. Estimate seasonal effects
without any covariate (Temp, TP) effects.

1.2 It is likely that both temperature and total phosphorus (TP) affect phyto-
plankton population growth rates. Using MARSS models, evaluate which
is the more important driver or if both are important. Leave out the sea-
sonal covariates from question 1, i.e. only use Temp and TP as covariates.

17

1.3 Evaluate whether the effect of temperature on phytoplankton manifests
itself via their underlying physiology (by affecting algal growth rates and
thus abundance) or because physical changes in the water stratification
makes them easier/harder to sample in some months. Leave out the sea-
sonal covariates from question 1, i.e. only use Temp and TP as covariates.

1.4 Is there support for temperature or TP affecting all functional groups’
growth rates the same, or are the effects on one taxon different from
another?

1.5 Compare your results for questions 2-4 using an observation error only
model, by using the lm() function.

1.6 Then compare to a process error only model using the arima() function
with the xreg argument.

1.7 Compute a time-series cross-validation metric for the models and compare
the results that you got using AICc for model comparison.

	Fitting multivariate state-space models with covariates
	Examples using plankton data
	Observation-error only model
	Process-error only model
	Both process- and observation-error
	Including seasonal effects in MARSS models
	Seasonal effects as fixed factors
	Seasonal effects as a polynomial
	Seasonal effects as a Fourier series

	Model diagnostics
	Problems

