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Topics

e MAR(1) models as sum of community interactions

* MAR(1) models as a general approximation to
nonlinear systems

e Stability properties of MAR(1) models
e Estimating MAR(1) models

The theory in this lecture draws largely from

lves AR, Dennis B, Cottingham KL, Carpenter SR. 2003. Estimating community stability and
ecological interactions from time series data. Ecological Monographs 73: 301-330

Many ecological applications are reviewed in

Hampton, S.E., E.E. Holmes, D.E. Pendleton, L.P. Scheef, M.D. Scheuerell, and E.J. Ward.
2013. Quantifying effects of abiotic and biotic drivers on community dynamics
with multivariate autoregressive (MAR) models. Ecology 94:2663-2669

Links to both are on the course syllabus



Lake Washington: a large change insewage inputs in the late
1960s led to a dramatic change in the plankton community
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How can we make sense of this?
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Dashed lines are (+) interactions; solid lines are (-) Hampton et al. (2006)



And reduce to the ‘important’ links?
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Multivariate AR(1) process, “MAR1”

Note no SS part

Assume p different interacting species, then for each sp. i:

X b, b, ... b,|X u, W,

X b, b ... b X u W

2 _ 12 22 n2 2 4 2 4 2
b, b, ... bnn__xn_t_1 U, | W,

w, ~ MVN(0,Q)

.1 Is abundance of species j at time t-1

B 7,

j
b;; is effect of species ] on species I

Note: when I = J, b;; is effect of species I on itself



Multivariate AR(1) process

Can add effects of q different environmental covariates (U):

Xl Cll C21 Wl
X C C C W
2 _ th_l TU+ 12 22 |: 1 :| n 2
S [N
_Xn_t _Cln C2n_ _Wn_t

q=2
C.(is covariate k (e.g., temperature) at time t

C, is effect of covariate k on species I

NOTE: covariate not time lagged; if you want a
time-lagged covariate you need to use the time-
lagged covariate as c,



Multivariate AR(1) process

Can write all of this as:
X, =u+Bx_+Cc,+w, w,~MVN(0,Q)

X;is p x 1 vector of species abundance at time t
Uis p x 1 vector of intrinsic growth rates

B is p x p matrix of density-dependent effects

X, is P x 1 vector of species abundance at time t-1
C is p x g matrix of covariate effects

C;is g x 1 vector of covariate values at time t



Multivariate AR(1) process

A note on the B matrix structure:
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Intra-specific effects



Real systems do not necessarily have log-linear
density-dependence

log N,,;

a linear model may suffice

Nonlinear

log N,

log N,,,

Note: If N is not spanning very large values

Linear approx.

e

/7

log N,

Modern literature on MAR(1) models allow B to be time-varying which allows
that linear approximation to vary in time.



Stationary distribution for MAR(1)

Mean vector: M = (| — B)_1 u

Covariance matrix: Voo = BVOOB'-l- Q

Note: cannot solve analytically this for V_,

Solution: use the Vec(e) operator
Vec(V,)=(1-B® B)_1 Vec(Q)

(analogous to the univariate case)



Stability properties of MAR(1) models

e Qur interest is in stable systems
(i.e. all eigenvalues of B lie within unit circle)

e Stability can be measured in several ways, but
here are three that we will use:

Stability measure | More stable when...

variance of the stationary distribution is low

Variance :
relative to that for the process error

rapid approach to the stationary distribution

Return rate . .
(i.e. high return rate)

fewer departures from the mean of the

Reactivit . . . .
Y stationary distribution (i.e. low reactivity)



Stability properties of MAR(1) models

Return rates (ie, resilience)

* |In deterministic models, equilibrium is a point or stable limit cycle
* |In stochastic models, equilibrium is the stationary distribution

e Rate of return to the stochastic equilibrium is the rate at which
the transition distribution converges to the stationary distribution
from an initial, known value

 The more rapid the convergence, the more stable the system

More stable Less stable
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Fig. 2B - lves et al. (2003)




Stability properties of MAR(1) models

Return rates 51¢
20

e Rate of return increases as |b| gets smaller E_S ﬁ 2
2
* Rate of return to mean governed by -mn I 3;&'35 5
. : z
dominant eigenvalue of B =[max(\g) Time 2
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* Rate of return of covariance defined by
dominant eigenvalue of B®B = max(Aggg)
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Take home msg: you can write the return rate
as a function of B. So if we can estimate B, b 005
we can say something about the stability of 0 10 20 30 40 50
the system as measure by return rate. Time
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Fig. 3 - Ives et al. (2003)



Stability properties of MAR(1) models

Reactivity

A “reactive” system moves away from a stable equilibrium
following a perturbation, even though the system will
eventually return to equilibrium.

Low reactivity High reactivity

(2

Fig. 2C - Ives et al. (2003)

High reactivity occurs when species interactions greatly amplify the
environmental forcing

Not how fast does it return but how far does it go?



Stability properties of MAR(1) models

Reactivity E
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Stability properties of MAR(1) models

Variance comparison

 Generally interested in the time spent
away from equilibrium
e More time = greater variance

More stable Less stable

o) N S

Fig. 2A - lves et al. (2003)

Combines properties of both return rate and reactivity



Stability properties of MAR(1) models

Variance comparison
2

1) 5002 v >\ Smaller = smaller v = more stable

1-2

Dansity of species 2

2) det(V, -Q)=det(V,)det(B)’

det(V, - Q)
" det(V,)

To standardize across various systems

det(B® = (a2,

det(B)’ = (MAhy o A,)

Density of spacies 2

Smaller A 9| smaller det(B)?P > more stable

Fig. 3 - Ives et al. (2003)



MAR(1) parameter estimation
X, =u+Bx_ +Cc, +Ww,

Maximum likelihood estimation (IMLE)

Goal: find the B and C, that maximize the likelihood
conditioned on the observed data.

Pro: does not require the assumption of no observation error (we can add an
observation process) and allows missing values.

Con: Slow.



MAR(1) parameter estimation

dat="some m x T matrix of log species abundances”

mod.list = list(
B="unconstrained”,
U="zero”,
Q="diagonal and unequal’,
Z="identity”,
A="zero’,

R="zero”,
C="unconstrained”, c="some g x T matrix of covariates”,

x0=dat[,1,drop=FALSE], tinitx=1
)

MARSS(dat, model=mod.list)

maximume-likelihood estimation via Expectation-
Maximization algorithm or method="BFGS” to use optim()

and a quasi-Newton method.



Goal is to find a simpler system to explain the observed
species changes
13 x 13 B matrix Compare

model support -
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156 non-diagonal B terms. There are approximately 1e+47 (that’s 1
followed by 47 zeros) unique B matrices with different Os.

1) We cannot do a brute force fitting of all models.
2) We should try to set some of those Bs to 0 via prior knowledge
about the system
3) We need a fast estimation algorithm




Much faster MAR(1) parameter estimation

Conditional least squares (CLS)

The CLS parameter estimates are those values that minimize
the squared difference between

1) the observed log population abundances at time t, and

2) those predicted by the MAR(1) model, conditional on the
log population abundances at time t-1.

Requires the assumption of no observation error and no
missing values allowed.



Conditional least squares (CLS)

T -
Y2 :[X2>X3>"°9XT] m x (T-1) (Mx ) xT-1) m X q
:[W19W29"'7WT] m x (T-1) Y2T :u1+BY1T_1+CC+W
c=[c,,Cy,....C0]  ax(T-1) mxm

We work row by row through the equation and solve for each

row of u, B and C.
1x(T-1) (T-1)x1 1 x (T-1)

Row i: find mm[(Y ~Y XY Y) }where \?i :Aui +|§iX+éic

N lay A

let Z" =[1,Y]" c]and D, =[U,B,,C,] then|D, =Y,Z2"(2"2)"

Note Ives et al. 2003 writes this transposed.



MAR(1) parameter estimation

Conditional least squares (CLS)
There are a couple of advantages to solving this via CLS:
1) It’s VERY fast, and

2) It’s easy to zero out elements of B to “test” for their
significance

b11 b12 b13 b14
0 0 0 0
B— 21 22 23 24
05 0y, Dy Dy
i 0y By Dy Dy )




MAR(1) parameter estimation

Conditional least squares (CLS)

There are a couple of advantages to solving this via CLS:
1) It’s VERY fast, and

2) It’s easy to zero out elements of B to “test” for their
significance

bl 1 O bl 3 bl 4
B _ b21 b22 b23 O
b3 1 O b 33 34
O b42 O b 44




MAR(1) parameter estimation

General steps to a MAR(1) analysis
1) Look at the data. Hopefully it looks like a mean-
reverting process.

2) Deal with issues like seasonality and trends (look at
papers to study how other have done this....)

3) Demean and standardize the variance of log
population size and covariates

4) Impose biological constraints. “zooplankton are not
affected by nitrogen”, “fish do not eat green algae”

5) Model selection for the B matrix



Search strategy for large model spaces

Best of 100 random search

1) 100 models are generated by randomly including (50/50) each
b element.

2) Best model (lowest AIC or BIC) is saved

3) Repeat 100 times to get a set of 100 “best” model.

4) Remove any variables that appears in less than 15 of the 100
best models.

5) Repeat the ‘Best of 100’ search (steps 1-3) with the new
smaller set of variables.

6) Repeat steps 1-5 until number of variables in the 100 best is
stable and chose best model.



Search strategy for large model spaces

Exhaustive via “leap and bound” algorithm

1) Algorithms to find best model over all possible variable
combinations without actually doing exhaustive search.

Forward step-wise

1) Start with no off-diagonal b.
2) Add the b that most improves (reduces) model AlIC
3) Stop at some step-AlC threshold

Backward step-wise

1) Same as forward but start with full model (all b’s)



Model diagnostics

Once selected, a MAR(1) model should be
scrutinized

Useful diagnostics include:
1) Are residuals temporally autocorrelated (via ACF)?

2) Are mean or variance of the residuals correlated with any variates or
covariates (via X-Y plots)?

3) Are residuals normally distributed (via normal probability plots)?

4) What proportion of the variance is explained by the model (via
conditional R?)?

Note: conditional R> measures the proportion of change in log density
from timet-1tot



Model diagnostics

X, =u+Bx,_, +Cc, +w,

Example of demeaned plankton data, 4 spp (lves et al 2003)
- we are fitting one B matrix (and u)
- so level changes need to be explained by the covariates

log biomass
-2 0

|
= oo
Ty

1
I T i

1 19 39 59 79 99 121 147 173 199 225 251 277 303

week of study



Parameter confidence intervals (Cl)

Can obtain CI’ s from model in 3 ways:

1) “Innovations” bootstrapping (how Ives et al (2003) does it)
* Parameter estimation produces state residuals (w,)

e Randomly resample the residuals (by column) to
produce a new X (meaning use as your w,)

e Use new X to again estimate parameters
e Repeat “many’ times
e Estimate CI’ s from distribution of parameter estimates



Parameter confidence intervals (Cl)

2) Parametric bootstrapping if you use a MLE
method

 Generate parametric bootstrap data from
the MLE model

 Use new data to again estimate parameters
(bootstrap parameter estimates)

 Repeat “many” times



Parameter confidence intervals (Cl)

3) Estimate Cl’s from the (estimated) distribution of
parameter estimates

e Estimate the Hessian matrix (there are various R
functions to do this)

e Use that to compute the (estimated) Cls
e Large-n approximation



MAR(1) with observation error

This is simply our (now) familiar MARSS model:

X; = Bx;_1 +Cc; +w,;, where w, ~ }"IVN(U Q)
yr = X; + Vi. where Vi ~ h[VN(O*R)



See the MARSS User Guide for a computer lab that
walks through

* Fit community interaction model to freshwater
plankton data from Ives et al. (2003)

 Add covariates to the above model

e Add an additional covariate (fish) observed
with error

e Compute stability metrics

e MAR1 package on CRAN will apply the Ives et
al 2003 algorithms to data sets.



