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Mean-reverting processes

In lecture, | will talk
about estimating
mean-reversion in
the context of
density-
dependence and
species

interactions, but

mean-reverting
stochastic
processes are
ubiquitous.

The Ornstein-Uhlenbeck process is the classic
continuous time mean-reverting stochastic process.

In the population dynamics literature, the Gompertz
model is the classic discrete time mean-reverting
process (although the Gompertz model also refers to
a continuous time version).



Univariate and multivariate Gompertz models

Univariate models X, =bx._, +U+W,
» Estimating density dependence
»or b term Y~ O

Simple 2-spp model
» 2x2 B matrix

Large multivariate models =&
» Big B matrices




Density dependence

univariate discrete exponential growth not in log-space

N, =N, -F N, =N -exp(u)

univariate discrete density-dependent growth not in log-space

general Specific type

no=n_-f (nt—l) n, =n_ -exp(u+ f(n_))

The shape of f(n_t-1) determines the dynamics of the system:
e stable or unstable equilibrium

e Speed at which equilibrium is approached

e Equilibrium level

e Sensitivity to perturbations



The Gompertz model

univariate discrete time deterministic Gompertz model
not in log-space

n, =n,_, -explu+(b-1)nn_,|

e |b| <1 “negative” density-dependence
b =1, no density-dependence
|b| > 1, “positive” density-dependence (blows up)

e The closer b is to 0, the stronger the density-
dependence (stronger the pull back to the mean). If
b=1, there is no “pull” back to the “mean” (the mean
is not in fact defined for this case).



Gompertz model written in log space
AR(1)
n, =n,_, -explu+(b-1)nn_,|
Taking the natural log of both sides
Inn, =Inn_ +u+(b—-1)lnn,_,
=Inn_ +u+blnn_ —Inn_,
=U+Dblnn_,

Substituting X; for In n;

Xt = U+ bxt—l AR(1) minus the noise term




Examples of the Gompertz for different b
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Equilibrium for the deterministic Gompertz
model

X, =bx,_, +U
the model reaches equilibrium at t = o0, so we can write
X, =bx_+U

And via some algebra, we arrive at:

u .
X =—— (providedb #1)

The equilibrium is a function of BOTH u and b.
This is rather unfortunate.



Equilibrium for the deterministic Gompertz
model

u=.5; b=.9; n=seq(0.1,500,.1)

plot(n,exp(u+(b-1)*log(n)),type="1")

abline(h=1,col="red"); abline(v=exp(u/(1-b)),col="blue")

text(exp(u/(1-b)), exp(u+(b-1)*log(n[1])), paste("u/(1-b) =",exp(u/(1-b))),pos=4)

u/(1-b) = 146.413159102577
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Add stochasticity (process error)

Adding stochasticity yields a univariate, lag-1 autoregressive
or “AR(1)” process:

X, =bx_, +Uu+w, Wt~N(O,02)

If |b| <1, the process is “stationary”

If b =1, the process is a “random walk” & “non-
stationary”

Known as the discrete-time Ornstein-Uhlenbeck process
in physics but as Gompertz or stochastic Gompertz model
in population dynamics.



Example realizations
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Equilibrium for the stochastic Gompertz
process

It has a stationary distribution

probability distribution of X;ast —
given |b| <1

Normally distributed with
mean w1 and variance v,

Fig. 1 - Ives et al. (2003)



Properties of the stationary distribution

Assuming |b| <1 (i.e. a stationary process)

U .
mean H, = (provided b+ 1)

variance V, =0 /(1 o b2)



Main properties
e Mean reverting, aka density-dependent

e Stationary, so it fluctuates around a mean

e Point equilibrium as opposed to a cycle equilibrium like
Lotka-Volterra (Lynx & hare) models you studied (maybe) in

Ecology 101

e Can be seen as a locally linear approximation of other types
of density-dependent interaction models

“locally linear” is jargon for “only holds for sure if x doesn’t
change too much”. In our case, x = log(n) = log abundance.




Parameter estimation in R

Open up R and follow after me
»Gompertz_example 0.R



We need to be careful if the data are NON-
stationary

MANY (most) fitting algorithms assume the data are drawn from the stationary
distribution and thus are only applicable if your data are stationary distribution.
MARSS does not assume the stationary distribution, fyi.
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observation error is known a problem
obs error = spurious density-dependence
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LETTER

Are patterns of density dependence in the Global Population
Dynamics Database driven by uncertainty about population

abundance?

Abstract
Jonm Kngpe® and Perry de Valpine  Demsity dependence in popuiation growth rates s of i and
Department of Endronmental but s difficuk to estimate. The Glbal Population Dynamics Dambase (GPDD), one of the largest collections
Science, Policy and Managemen of populigon time series avadable, has been emtemively wed © study crom-mma parems in density

137 Muttaf Hal 8114, Unbarsity  dependence. A major difficulty with amessing density dependence from time series & that uncerminty in

of Calfornia, Berkeley, Bekeley,

populzion abundance estimates can cawe swong biss in both tests and estimates of swength. We analyse 627

€A 300, USA daea sem in the GPDD wig Gompertz popul xion models and accaunt for wicerninty via the Kulman fiker
SComopondenoy: Senat: Resuits suggest that ot leant 45% of the time series dispiay densicy dependence, bur that it is weak and difficult
Joupetbukaloyede ndﬂuhnwmﬂummnwnwuhﬂmhmm-
strong, Sustragng that atmars changes wns ahout density
mmmmm
Keywords
Dessity dependence, GPDD, cbservagion error, time series.
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INTRODUCTION o fon o s il degondans
Demity dependence in populiion growth rates i a fandamenal estimates of populifon abundance (Shenk « & 1998). Simple
conceg for ecological theory as wedl 44 for populatin managemens  procedures to comect for effecs of ucerminty such a3 e SIMFX
E % density in wild p iom has, however, method have been suggesied (Solow 1998, Freckleton o al 2006) but
proved challenging. Ideally, derity dependence in growth rases require hat the varance of the uacerninty about populaon
should be estimated directy from the effecs of density acting on the sze is known. A mose direct approach to account for uncertsinty i

traits contributing to population growh. Given cument progress in
starivical methods for joindy analysing data on both populition sze
ulddmn'\phcmn(hln:ud 2005), and with long tem
involing data becoming
common, this approach hakds a bright futue. Howeves, the number
of such studies & currently Emied and fey only cover 2 rather mmmow
range of txa. Loagtemn time series on populion abundince we
mare common and an be used © estimate density dependence in
popuiation growh rates. Under this approach, density dependence &
defined m 2 general tendency of per capita growsh rates to decrease
when popublion size is lge and incrase whea & i smal, mad s
identified = a statistical pagern not ed to any spedfic bidogial
mechanism (Wolda & Dennis 1993).
k--md-drduu-nnumd.u-n!h—-rdqmﬂm

semitive to uncertiinty in the observations (St-Amant 1970, Kuno
197%; I 1972 Sade 1977} Smias concerms were aired about
estmaxs from fisheries models of smck-recruitment dara (Ludwig &
Waliers 1981; Walers & Ludwig 1981). Uncertaiory inflates the Type [
mumdu-humdmm-dnmmm
to bias densiey if dynamics we
under-compensaorny and townsds weakes density dependence if
dynamics are overcompensaory (Benson 1973} Bulmer (1975)
devised two tests for demsity dependence mling the time series mature
of the data into sccount. One of thase was designed o be robust

peovided by stawe space models, first used for modeling populasion
dynamics in the fisheries Bermure (eg. Mendelmoha 1988; Sullivan
1992). Sexe space madels in these cases comint of 2 model of 2

process combined with 3 model of the
uncertanty in the sbundance estimaies, omeSmes emmed obwerva-
ton, or and may = the
warance of this uncertainty as well as © filter out its effecn
(de Valpine & Hastings 2002; Calder # 2l 200X Bockland # al 2004;
Denes of 4. 2006). E——Iﬂdl'—ulﬁlr-:ud.:h-dw

bias chan esti

mumbnnu'nmmzu;um
stafisticll properties of even smple stte space model estimanes are
nat fully understood (Denris o al 2006, Lebeewn 2009,

of wxa (lochausti & Halley 2001). Anglyses using data in he GPDD
have focused on, eg, extinction risks (Fagan of al 2001; Inchausti &
Halley 2003; Brook «f &l 2006), populison cycies (Kendall o & 1998;
Murdoch of al 2002) and effects of weather (Kmpe & de Valpine
2011) bux, arguably, the smdies stiering the most attention 2 well a3
debate have addressed population regulation and deasity dependence.
These have parteres in the shape of demsity dependence
(Sibiy #f &l 2005; Polasmky #f &l 2009) and in the strengsh of regilasion
and density dependence (Brook & Beadshaw 2006; Shiy of al 2007;
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ESTIMABILITY OF DENSITY DEPENDENCE IN MODELS
OF TIME SERIES DATA

Jomas Kxare'
Department of Theovet cal Ecology, Ecology Buldng, Lund Unwversity, SE-22362, Lund, Sweden

Abstract. Fstimation of density dependence from time seres data on population
abundance is hampered in the presence of observation or measumment eroms. Fitting
state-space modek has been proposed as a solution that reduces the bias in estimates of

density dependence caused by ignor

ing observation errors. Whik this & often true, I show

that, for specific parameter values, there are identifiability ssues in the linear state-space
model when the strengih ofdnnly dependence and the observation and process error

ae all unk Usng bati

1o explore properties of the estimatorns, [

illustrate that, unkss assumptions are imposed on the provess of observation emor variances,

the variance ol'lheaul.::ala of density ﬁpudmw varies critically with the strength of the

density d d

the stronger the density dependence the

more difficult it & to estinate in the pmnu:c of observation errors. The identifiabikity ssues

dimppesr when density

dependence is estimated from the state-space model with the

obsenvation error variance known 1o the comect value. Dirct estimates of observation
variance in sbundance censuses could therefore prove helpful in estimating densty dependence
but care needs to be taken 10 assess the uncertainty in variance estimates.

Key wordy:  demsuty dependance: stave-space models: vme serses amalysis

INTRODUCTION

I}mly d:pmd:nce can be lomely defined as a
jon st on some life
hslnty or population trit dnmu. The concept is of
central importance 1o popubstion ecology since it
determines both the imﬁngaudlh:-hm! l-ncl:tl-umr
of the dynamics of pop 1 of
densty dependence are therefore :mmtum from a
saenuﬂc as well as from a mansgement perspective.

of density ds d in the dy ik of
natural populstions has however proved 1o be chalkng-
ing (Dennis et al. 2006).

When relevant data are availsble, effects of density
dependence can be directly linked 10 Efe history traits.
For instance, density dependence in recruitment (e.g,
Crespin et al 2006) and survival (e.g., Festa-Bianchet et
al. 2003) bhave boen estimated by mark—recapture
analyses and density dependence in fecundity has been
inferred from daia on reproduction (e.g, Solbreck and
Tves 2007). Density dependence in life history tmits
influences density dependence in populstion growth rate
(Lande et al 2002 It can be argued that density
dependence in population growth is the most imponant
form of density dependence for determining long-term
behavior of populstions. However, since the lnk from
demographic traits 1o population change & almost never
known with good preckion, density dependence in

Manuscript received 12 January 2008; revised 2 June 2008;
accepted 12 June 208, Corresponding Editor: M. Lavine.
' E-mail: jonas knapedteonckol s

population growth rate & not esily infermed from Efe
history data even if the effects of density dependence on
several life history traits are well known. Time seris
analyds of population abundance data provides an
ahernative or complementary method that ideally could
serve ai & more direct way of estimating densty
dependence in population growth rate.

Estimates of density dependence must rely on
messures of population densty that are usually difficult
to obtan with precision (Freckleton et al. 2006). This
problem is panicularly relevant to estimates of density
dependence in growth rate derived from time seres data
on populstion €z in that both the dependent and the
independent variable are measured with uncertainty.
Introducing observation error 1o dynamical data chang-
e its dynamical structure (Dennis et al. 2006) and
estimators relating to the dynamics of the data that do
not account for observation errors are therefore often
bissed. Specifically, tests and estimators of density
dependence based on time serfes data are known 1o be
bizsed if observation errors are present but ignored for
both dirct (Kuno 1971, Wahers and Ludwig 1981,
Shenk et al. 1998, Freckleton et al. 2006) and delayed
(Soluw 2001) densty dependence. An appealing met hod

ing this difficulty is provided by the state—
l|-:d framework (Harvey lm a general term for
statistical modek of observations of hidden state
variables that are dynamically linked through time.
For time series data on population abundance, state-
apace models can be wsed for explicit modeling of both
the observation and the population dynamical processes
(Stenseth et al 2003, Jamieson and Brooks 2004).
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Parameter estimation accounting for obs
error

»Gompertz_example 1.R estimation technically easy..
»Gompertz_example 2.R replication
»Gompertz_example 3.R ML on the edge




Estimating R matrix is not so easy, but
replication helps A LOT

MARSS models (however you fit them) allow you to easily incorporate replication.

Ecological Monographs, 76(3), 20006, pp. 323-341
© 2006 by the the Ecological Society of America

ESTIMATING DENSITY DEPENDENCE, PROCESS NOISE,
AND OBSERVATION ERROR

Brian DENNIS,I’:’ Jost MIGUEL P(JNCIAN(),2 SuBHASH R. LELE,3 Marxk L. TAPL-‘R,4 AND Davip F. StapLes?
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Jonas KNAPE!

Department of Theoretical Ecology, Ecology Building, Lund University, SE-223 62, Lund, Sweden

Abstract.  Estimation of density dependence from time series data on population
abundance is hampered in the presence of observation or measurement errors. Fitting
state-space models has been proposed as a solution that reduces the bias in estimates of
density dependence caused by ignoring observation errors. While this is often true, I show
that, for specific parameter values, there are identifiability issues in the linear state-space
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Estimation much easier if you can assume that your
data are a sample from the stochastic equilibrium
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How to estimate b when you are willing to
assume the data come from stoc. equil.:

}:ca((w.’m! Monographs, 76(3), 2006, pp. 323341
© 2006 by the the Ecological Society of America

ESTIMATING DENSITY DEPENDENCE, PROCESS NOISE,
AND OBSERVATION ERROR

5 4 4
Brian DLNle > Josk: MIGUEL P()N(MN() SuBHASH R. LLLL MARrRK L. TAPER,” AND DAvID F. STAPLES

Dcpm tment of Fish and Wildlife Resources and Department of Statistics, University of Idaho, Moscow, Idaho 83844 USA
2 Initiative for Bioinformatics and Evolutionary Studies (IBEST), Department of Mathematics, University of Idaho,
Moscow, Idaho 83844 USA
3Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta T6G 2G1 Canada
4Dﬁ’pm'rmem of Ecology, Montana State University, Bozeman, Montana 59717 USA

Abstract.  We describe a discrete-time, stochastic population model with density depend-
ence, environmental-type process noise, and lognormal observation or sampling error. The
model, a stochastic version of the Gompertz model, can be transformed into a linear Gaussian
state-space model (Kalman filter) for convenient fitting to time series data. The model has a

Idea #1 Impose the constraint that

W(H)=(y(t)-y(t-1)) and

W(t)-W(t-1)

* Have the variance-covariance structure of a stochastic
Gompertz observed with error.

 Compute Q from the total sample variance and the estimate

of b



How to estimate b when you are willing to
assume the data come from stoc. equil.?

ldea #2 If you subtract E(x(t)) then U=0

 Use mean(data) as E(x(t))
« Has the added value of removing “a” too!

e Used in Ives et al 2003

« Gompertz_example 4.R



Important messages

u and B are confounded. Likelihood is banana-shaped, so
we need to constrain u

e de-mean the data; set u=0; set tinitx=1

e don’t demean data; set u=0; estimate a; set tinits=1

e don’t demean data; use covariates in obs to model level

 be careful in what covariates you include in the process model (you’re
introducing u via Cc)

What happens when we add observation error?
e Estimation is more difficult.
 Replication will help us estimate Rvs Q



2-species: Predator-Prey

+b
+b

Moose X =Uu_ + D

m—m mtl W—m th

Wolf Xpp = Uy, +Db

m—w mt 1

W—W th




“spp” abundance

MAR(1): x,=Bx, ; + u + w,

mt | bm—>m bW—>m
w,t | _bm—>w bW—)W |
g J

Y

B = interaction matrix

m,t—1 um

EE BE

w,t—1 uw

Process variation
MVN(0,Q)




Meaning of the B matrix

)

Intra-specific effects
effect of spp i on itself,
aka density-dependence




Observation error causes

» Spurious density-dependence, i.e. apparent stronger effect of self
on self

» Spuriously low species interaction strengths, i.e. apparent lower
effect of other on self

:

Intra-specific effects
gotoO




bm—>m bW—>m i||:xm,t1:| n |:um :| 4 |:C1—>m C2—>m C3—>m:|
bm—>w bw—>w Xw,t—l uw C1—>2 C2—)W C3—>W

— -

Adding covariates

covariates

B = interaction matrix covariate effect

Process variation not from
covariates (“unexplained”)



Lotka-Volterra predator-prey interactions




Simple 2-species system
Predator & Prey

Data are simulated using a discrete time version of a
Lotka-Volterra model with density-dependence in the
herbivore— easy to change interaction strength

H = herbivore sp

dH/dt: P = predator sp.
b = herbivore birth rate
bH(1 - H/K) -aHP+ Wh K = herbivore carrying-capacity
a = per capita attack rate
dP/dt = e = conversion efficiency
(consumed prey turning into new
e(aPH) -SP + Wp predators)

s = death rate for predators



This model can display a variety of
dynamics

—e— Herbivore

—=— Predator

—e— Herbivore
) } —a— Predator

E ¥ P P & & Q02




Estimate strength of density-dependence and
interaction strength using MARSS

e LV _example 1.R
e change conversion efficiency of
predator
e LV _example 2.R
e add observation error
LV _example 3.R
e covariate affects K of herbivore
LV _example 4.R
e covariate affects conversion
efficiency of predator
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Computer lab: the moose and wolf
dynamics on Isle Royale

data and images from www.isleroyalewolf.org




