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What we’ve learned so far

* Time series can be useful for identifying

structure, improving precision, and accuracy
of forecasts

* Modeling multivariate time series

— e.g. MARSS() function, with each observed time
series mapped to a single discrete state

* Using DFA
— Structure determined by factor loadings



Response generally the same variable
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Making inference about population as a whole involves modeling
pink as well as blue time series



Multivariate approach with MARSS

* Time series modeled as independent (allowed
to have different states/trends)

e But we estimate the correlation with Q matrix
e Q="“unconstrained”

4 Y12 Y3 Y14
41 Y9rp Y3 Yo4
43, 43p Y33 Y34
Qa1 a2 Yaz Ysa

* Obvious problem: (m * (m+1))/2 parameters!



Constraints on constraints

 We'd like to be able to reduce # parameters in
Q matrix, and can specify alternate structures,
but we have to follow rules

* This can cause problems in MARSS
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e |f(1,2) are co_rrelated and (2,3)- correlated,
(1,3) have to be correlated




Multivariate approach with DFA

e Estimate how individual observed time series
load onto ‘trends’
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Potential problems with both the
MARSS and DFA approach

e Sites separated by large distances
may be grouped together

* Sites close to one another may be
found to have very different dynamics



Are there biological mechanisms that
may explain this?

* Puget Sound Chinook salmon

— 21 populations generally cluster into 2-3 groups
based on genetics

— Historically large hatchery programs

Puget Sound Harbor Seal Surveys

e Hood canal harbor seals
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Motivation of explicitly including
spatial structure

* Adjacent sites can be allowed
to covary

e Estimated parameters greatly
reduced to 2-5



Types of spatial data

* Point referenced data
— Aka geostatistical data
— Typically 2-D, but could be 1-D or 3-D (depth, altitude)
— May be fixed station or random (e.g. trawl surveys)

* Point pattern data

— Spatially referenced based on outcomes
* Presence of a species

— Inference focused on describing clustering (or not)

 Areal data
— Locations occur in blocks
— counties, management zones, etc.



Computationally convenient
approaches

* CAR (conditionally autoregressive models)
— Better suited for Bayesian methods

— Goal of both is to write the distribution of a single
prediction analytically in terms of the joint (y1, y2)

* SAR (simultaneous autregressive models)
— Better suited for ML methods
— Simultaneously model distribution of predicted values

e ‘Autoregressive’ in the sense of spatial
dependency / correlation between locations



CAR models (Besag 1991)

Y. =BX +¢i+e¢

BX Regression coefficients

¢ii Spatial component (aka Markov Random Field)
E. Residual error term

l

* Create spatial adjacency matrix W, based on
neighbors, e.g.

 W(i,j) =1 if neighbors, 0 otherwise
* W often row-normalized (rows sum to 1)






Besag et al. 1991
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In matrix form y~N(0,(1-pW)‘ )

Implemented in R: spdep, CARBayes




SAR models

e Simultaneous autoregressive model
y~N(0,(1-pW)" D(1-pW)"")
Dii =Oz’2

e Remember that the CAR was

y~N(0,(1-pW)" D)

~ 2
Dii =0,



Commonalities of both approaches

* Adjacency matrix W can also instead be
modified to include distance

* Models spatial dependency as a function of
single parameter p

e Models don’t include time dimension in
spatial field

— One field estimated for all time steps



Problems with these approaches

 Wall (2004) “A close look at the spatial structure implied by
the CAR and SAR models”
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Fig. 5. Lines in both plots represent the implied model correlations between first order neighbors in the US
lattice based on the SAR model (left) and CAR model (right) as functions of the respective parameters p;

and pc.



Alternative to CAR & SAR: model

elements of Q as functions

* Create matrix D, as pairwise distances

* This can be 1-D, or any dimension

— We'l

use Euclidian distances for 2-D

X
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Next specify spatial covariance function
(aka “kernel”)

* Exponential

Cov(x,,x,)=0" exp(-d,,/0) Cov(x,x,)= o’ exp(-0- d,)
e Squared exponential”

Cov(x,,x,)=0"exp(-d;, /)

 Matern family

Covix, ) =0t — [y dz |k [y 42
r(v)2' p P

*Also referred to as radial basis function, or Gaussian



Cov(dist)
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Considerations for time series models

* Should spatial dependency be included

* How to model it
— Constant
— Time varying
* Autoregressive

 Random walk
* Independent variation?



Model-based geostatistical
approaches

1. Generalized least squares
2. Bayesian methods in spBayes
3. INLA models

4. Spatial GAMs



Method 1: using gls()

* Generalized least squares function
— Similar syntax to Im, glm, etc.

* Flexible correlation structures
— corExp()
— corGaus()
— corlLin()
— corSpher()

* Allows irregularly spaced data / NAs
— unlike Arima(), auto.arima(), etc.



Washington SNOTEL Current Show Water Equivalent (SWE) % of Normal
Feb 16, 2015
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 We'll use Snow Water Equivalent
(SWE) data in Washington state

Latitude (°)

70 SNOTEL sites
— We'll focus only on Cascades
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* |nitially start using just the February SWE data
1518 data points (only 29 missing values!)



We can use AIC to evaluate different
correlation structures

mod.exp = gls(Feb ~ elev, correlation =
corExp(form="lat+lon,nugget=T), data = y[which(is.na(y

SFeb)==F & ySWater.Year==2013),])
AlC(mod.exp) = 431.097

mod.gaus = gls(Feb ~ elev, correlation =
corGaus(form="~lat+lon,nugget=T), data =
y[which(is.na(ySFeb)==F & ySWater.Year==2013),])

AlC(mod.gaus) = 433.485



Diagnostics: fitting variograms

var.exp <- Variogram(mod.exp, form =~ lat+lon)
plot(var.exp,main="Exponential",ylim=c(0,1))

var.gaus <- Variogram(mod.gaus, form ="~ lat+lon)
plot(var.gaus,main="Gaussian",ylim=c(0,1))
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Extensions of these models

e corExp and corGaus spatial structure useful
for wide variety of models / R packages

Linear/non-linear mixed effect models
* Ime() / nlme() in nlme package
Generalized linear mixed models
 gImmPQL() in MASS package
Generalized additive mixed models

« gamm() in mgcv package




Method 2: spBayes

Slightly more complicated syntax:

Specify:
a. Priors on parameters

b. Tuning parameters for Metropolis sampling
(jumping variance)

c. Starting / initial values

d. Covariance structure (“exponential”,

)«

“gaussian”, “matern”, etc)
e. Number of MCMC iterations / burn-in, etc.



Example with WA SWE data

# This syntax is dependent on model parameters. See vignette

priors <- list("beta.Norm"=list(rep(0,p), diag(1000,p)), "phi.Unif"=c(3/1,
3/0.1), "sigma.sq.1G"=c(2, 2), "tau.sq.1G"=c(2, 0.1))

# Phi is spatial scale parameter, sigma.sq is spatial variance, tau.sq = residual
starting <- list("phi"=3/0.5, "sigma.sq"=50, "tau.sq"=1)

# variance of normal proposals for Metropolis algorithm
tuning <- list("phi"=0.1, "sigma.sq"=0.1, "tau.sq"=0.1)

m.1 <- spLM(y~X-1, coords=cords,n.samples=10000, cov.model =
"exponential", priors=priors, tuning=tuning, starting=starting)



Coefficients need to be extracted

#i#frecover beta and spatial random effects
burn.in <- 5000
m.1 <- spRecover(m.1, start=burn.in, verbose=FALSE)
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Standard MCMC diagnhostics

e QOutput is of class ‘mecmc’
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Other spatial models in spBayes

Non-Gaussian errors
spGLM

Multivariate
spMvLM()
spMvGLM()

Dvnamic linear model (DLM)
spDynLM




Method 3: models in INLA

* INLA = Integrated Nested Laplace Approximation

 R-INLA software = interface between R and the
GMRFLib C library, etc.

e Get it here:
http://www.r-inla.org/



Motivation of INLA

Some problems contain simple spatial structure

— e.g. the harbor seal data in MARSS() with only 5 -7 time
series

Others are much more complex
— WA SWE data
— Fisheries survey data (1000s of points)

Including time-varying spatial fields becomes very
computationally difficult

Doing all of the above in a Bayesian setting can be
prohibitive, but we can use Laplace approximation



Varying spatial fields example: eulachon-shrimp bycatch
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Estimation done via maximum likelihood

e Estimates seems similar to those from gls()
and spBayes()
* Year included as numeric here (not significant)

> res2pos$summary.fixed

mean sd 0.025quant @.5quant 0.975quant mode kld
Intercept -14.576549539 2.788559e+01 -69.319288831 -14.579598755 40.13298938 -14.583354523 2.924022e-16
elev 0.010464086 8.931255e-04 ©0.008740241 0.010453876 ©.01224473 0.010432282 6.838504e-13
year -0.004199109 1.409759%e-02 -0.031884876 -0.004197175 0.02345057 -0.004192103 5.54056le-16

> |

* Alternatively, we can include year in spatial
field
 Year can also be included as factor



Projecting INLA estimates to surface
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Spatial SWE fields by year
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Additional output / diagnostics

 Plots of observed v fitted values
 Prediction to new locations

* Samples from posterior distribution via
Laplace approximation



Approach 4: Spatial GAMs

* Previous approaches modeled errors as
correlated

e Spatial GAMs generally model mean as
spatially correlated

 Somewhat analogous to AR vs MA models



Examples of 2D GAMSs

g = gam(y ~ s(lat, lon)) # basis spline
g = gam(y ~ te(lat, lon)) # tensor product spline

g = gam(y ~ te(lat, lon, by = as.factor(year)) #
smooths by year
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