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What	we’ve	learned	so	far	

•  Time	series	can	be	useful	for	iden*fying	
structure,	improving	precision,	and	accuracy	
of	forecasts		

•  Modeling	mul*variate	*me	series	
– e.g.	MARSS()	func*on,	with	each	observed	*me	
series	mapped	to	a	single	discrete	state	

•  Using	DFA		
– Structure	determined	by	factor	loadings	



Response	generally	the	same	variable	
(not	separate	species)	

Making	inference	about	popula2on	as	a	whole	involves	modeling		
pink	as	well	as	blue	2me	series	



Mul*variate	approach	with	MARSS	

•  Time	series	modeled	as	independent	(allowed	
to	have	different	states/trends)	

•  But	we	es*mate	the	correla*on	with	Q	matrix	
•  Q	=	“unconstrained”	

•  Obvious	problem:	(m	*	(m+1))/2	parameters!	

Q =

q1,1 q1,2 q1,3 q1,4
q2,1 q2,2 q2,3 q2,4
q3,1 q3,2 q3,3 q3,4
q4,1 q4,2 q4,3 q4,4
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Constraints	on	constraints	

•  We’d	like	to	be	able	to	reduce	#	parameters	in	
Q	matrix,	and	can	specify	alternate	structures,	
but	we	have	to	follow	rules	

•  This	can	cause	problems	in	MARSS	

•  If	(1,2)	are	correlated	and	(2,3)	correlated,	
(1,3)	have	to	be	correlated	

Q =

q1,1 q1,2 0 0
q2,1 q2,2 q2,3 0
0 q3,2 q3,3 q3,4
0 0 q4,3 q4,4
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Mul*variate	approach	with	DFA	

•  Es*mate	how	individual	observed	*me	series	
load	onto	‘trends’	

124 9 Dynamic factor analysis

rotation? Interestingly, no. Because H is a non-singular, orthogonal matrix,
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Fig. 9.3. Plot of the factor loadings (following varimax rotation) from the best
model fit to the phytoplankton data.

9.6 Examining model fits

Now that we have found a “best” model and done the appropriate factor and
trends rotations, we should examine some plots of model fits (see Figure 9.5).
First, it looks like the model did an adequate job of capturing some of the
high frequency variation (i.e., seasonality) in the time series. Second, some
of the time series had much better overall fits than others (e.g., compare
Diatoms versus Cryptomonas). Given the obvious seasonal patterns in the
phytoplankton data, it might be worthwhile to first “detrend” the data and
then repeat the model fitting exercise to see (1) how many trends would be
favored, and (2) the shape of those trends.



Poten*al	problems	with	both	the	
MARSS	and	DFA	approach	

•  Sites	separated	by	large	distances	
may	be	grouped	together	

•  Sites	close	to	one	another	may	be	
found	to	have	very	different	dynamics	



Are	there	biological	mechanisms	that	
may	explain	this?	

•  Puget	Sound	Chinook	salmon	
– 21	popula*ons	generally	cluster	into	2-3	groups	
based	on	gene*cs	

– Historically	large	hatchery	programs	

•  Hood	canal	harbor	seals	
– Visited	by	killer	whales	

80 7 Combining multi-site and subpopulation data
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Puget Sound Harbor Seal Surveys

Fig. 7.1. Plot of the of the count data from the five harbor seal regions (Je↵ries et
al. 2003). The numbers on each line denote the di↵erent regions: 1) Strait of Juan
de Fuca (SJF), 2) San Juan Islands (SJI), 2) Eastern Bays (EBays), 4) Puget Sound
(PSnd), and 5) Hood Canal (HC). Each region is an index of the total harbor seal
population, but the bias (the di↵erence between the index and the true population
size) for each region is unknown.

about the population structures (one big population versus multiple smaller
ones) and observation error structures to see how di↵erent assumptions change
the trend estimates.

The harbor seal data are included in the MARSS package. The data have
time running down the rows and years in the first column. We need time
across the columns for the MARSS() function, so we will transpose the data:

dat=t(harborSealWA) #Transpose
years = dat[1,] #[1,] means row 1
n = nrow(dat)-1
dat = dat[2:nrow(dat),] #no years

If you needed to read data in from a comma-delimited or tab-delimited file,
these are the commands to do that:



Mo*va*on	of	explicitly	including	
spa*al	structure	

•  Adjacent	sites	can	be	allowed	
to	covary		
	
•  Es*mated	parameters	greatly	
reduced	to	2-5	
	



Types	of	spa*al	data	
•  Point	referenced	data	
–  Aka	geosta*s*cal	data	
–  Typically	2-D,	but	could	be	1-D	or	3-D	(depth,	al*tude)	
– May	be	fixed	sta*on	or	random	(e.g.	trawl	surveys)	

•  Point	pagern	data	
–  Spa*ally	referenced	based	on	outcomes	

•  Presence	of	a	species	

–  Inference	focused	on	describing	clustering	(or	not)	

•  Areal	data	
–  Loca*ons	occur	in	blocks	
–  coun*es,	management	zones,	etc.	



Computa*onally	convenient	
approaches	

•  CAR	(condi*onally	autoregressive	models)	
–  Beger	suited	for	Bayesian	methods	
– Goal	of	both	is	to	write	the	distribu*on	of	a	single	
predic*on	analy*cally	in	terms	of	the	joint	(y1,	y2)	

•  SAR	(simultaneous	autregressive	models)	
–  Beger	suited	for	ML	methods	
–  Simultaneously	model	distribu*on	of	predicted	values	

•  ‘Autoregressive’	in	the	sense	of	spa*al	
dependency	/	correla*on	between	loca*ons	



Yi = BXi +φii+εi
BX
φii
εi

CAR	models	(Besag	1991)	

						

•  Create	spa*al	adjacency	matrix	W,	based	on	
neighbors,	e.g.		

•  W(i,j)	=	1	if	neighbors,	0	otherwise	
•  W	olen	row-normalized	(rows	sum	to	1)	
					

Regression	coefficients	

Spa*al	component	(aka	Markov	Random	Field)	

Residual	error	term	



1	 2	 3	 4	 5	
1	 0	 1	 0	 0	 0	
2	 1	 0	 1	 0	 0	
3	 0	 1	 0	 1	 0	
4	 0	 0	 1	 0	 1	
5	 0	 0	 0	 1	 0	

1	

2	

3	

4		

5	



•  Besag	et	al.	1991	

•  Leroux	et	al.	1999	

•  In	matrix	form	

•  Implemented	in	R:	spdep,	CARBayes	
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SAR	models	

•  Simultaneous	autoregressive	model	

•  Remember	that	the	CAR	was	

y ~ N 0, I − ρW( )−1 !D( )
!Dii =σ i

2

y ~ N 0, I − ρW( )−1 !D I − ρW( ) '−1( )
!Dii =σ i

2



Commonali*es	of	both	approaches	

•  Adjacency	matrix	W	can	also	instead	be	
modified	to	include	distance	

•  Models	spa*al	dependency	as	a	func*on	of	
single	parameter	ρ	

•  Models	don’t	include	*me	dimension	in	
spa*al	field	
– One	field	es*mated	for	all	*me	steps	



Problems	with	these	approaches	
•  Wall	(2004)	“A	close	look	at	the	spa/al	structure	implied	by	

the	CAR	and	SAR	models”	320 M.M. Wall / Journal of Statistical Planning and Inference 121 (2004) 311–324
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Fig. 5. Lines in both plots represent the implied model correlations between !rst order neighbors in the US
lattice based on the SAR model (left) and CAR model (right) as functions of the respective parameters !s
and !c.

are 107 pairs of states that are considered !rst order neighbors, that is, their borders
touch. Fig. 5 shows the implied correlations between these neighbors as a function
of !s and !c. Immediately we see in Fig. 5 that for any given !s or !c, there is
variability in the correlations among all the !rst order neighbors. This variability in
the correlations changes as a function of !s and !c, for example, correlations range
from 0.03 to 0.19 when !s=0:1 while the range is much larger for !s=0:6 where the
correlations range from 0.24 to 0.64. It is also clear from Fig. 5 that the !rst order
neighbor correlations increase at a slower rate as a function of !c in the CAR model
than for !s in the SAR model. A few things about Fig. 5 are intuitively pleasing. As
the “spatial correlation” parameter (!s or !c) increases from zero to the upper end of
the parameter space, the implied correlations between all sites monotonically increase.
This matches our intuition from autoregressive models in time series that says: as the
autoregressive parameter increases from zero, the correlation between times increases.
Another is that as the “spatial correlation” parameter (!s or !c) reaches the endpoints
of the parameter space, the implied correlations between all the pairs of sites tend
toward 1 or −1. (Although it is di"cult to see in Fig. 5, as !s and !c reach the lower
end of interval −1:392, all of the correlations do approach 1 or −1).
We now point out probably the most displeasing result of these models. That is, the

ranking of the implied correlations from largest to smallest is not consistent as !s and



Alterna*ve	to	CAR	&	SAR:	model	
elements	of	Q	as	func*ons	

•  Create	matrix	D,	as	pairwise	distances	

•  This	can	be	1-D,	or	any	dimension	
– We’ll	use	Euclidian	distances	for	2-D	
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Next	specify	spa*al	covariance	func*on	
(aka	“kernel”)	

•  Exponen*al	

•  Squared	exponen2al*	

•  Matern	family	

Cov(x1, x2 ) =σ
2 exp(−d1,2 /θ ) Cov(x1, x2 ) =σ

2 exp(−θ ⋅d1,2 )
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*Also	referred	to	as	radial	basis	func*on,	or	Gaussian	



Θ=1	

Θ=10	

Cov(x1, x2 ) =σ
2 exp(−d1,2

2 /θ )







Considera*ons	for	*me	series	models	

•  Should	spa*al	dependency	be	included	

•  How	to	model	it	
– Constant	
– Time	varying	

•  Autoregressive	
•  Random	walk	
•  Independent	varia*on?	



Model-based	geosta*s*cal	
approaches	

•  1.	Generalized	least	squares	

•  2.	Bayesian	methods	in	spBayes	

•  3.	INLA	models	

•  4.	Spa*al	GAMs	



Method	1:	using	gls()	

•  Generalized	least	squares	func*on	
– Similar	syntax	to	lm,	glm,	etc.	

•  Flexible	correla*on	structures	
– corExp()	
– corGaus()	
– corLin()	
– corSpher()	

•  Allows	irregularly	spaced	data	/	NAs	
– unlike	Arima(),	auto.arima(),	etc.	
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•  We’ll	use	Snow	Water	Equivalent		
(SWE)	data	in	Washington	state	

•  70	SNOTEL	sites	
– We’ll	focus	only	on	Cascades	

•  1981-2013	

•  Ini*ally	start	using	just	the	February	SWE	data	
•  1518	data	points	(only	29	missing	values!)	



We	can	use	AIC	to	evaluate	different	
correla*on	structures	

mod.exp	=	gls(Feb	~	elev,	correla*on	=	
corExp(form=~lat+lon,nugget=T),	data	=	y[which(is.na(y
$Feb)==F	&	y$Water.Year==2013),])	
AIC(mod.exp)	=	431.097	
	
mod.gaus	=	gls(Feb	~	elev,	correla*on	=	
corGaus(form=~lat+lon,nugget=T),	data	=	
y[which(is.na(y$Feb)==F	&	y$Water.Year==2013),])	
AIC(mod.gaus)	=	433.485	

	
	



Diagnos*cs:	fi#ng	variograms	

var.exp	<-	Variogram(mod.exp,	form	=~	lat+lon)	
plot(var.exp,main="Exponen*al",ylim=c(0,1))	
	
var.gaus	<-	Variogram(mod.gaus,	form	=~	lat+lon)	
plot(var.gaus,main="Gaussian",ylim=c(0,1))	



Exponen*al	variogram	

No	correla*on	

M
ore	varia2on	

Sill	

Nugget	

Range	



Gaussian	variogram	



Extensions	of	these	models	

•  corExp	and	corGaus	spa*al	structure	useful	
for	wide	variety	of	models	/	R	packages	

Linear/non-linear	mixed	effect	models	
•  lme()	/	nlme()	in	nlme	package	
Generalized	linear	mixed	models	
•  glmmPQL()	in	MASS	package	
Generalized	addi*ve	mixed	models	
•  gamm()	in	mgcv	package	



Method	2:	spBayes	
•  Slightly	more	complicated	syntax:	

•  Specify:	
•  a.	Priors	on	parameters	
•  b.	Tuning	parameters	for	Metropolis	sampling	
(jumping	variance)	

•  c.	Star*ng	/	ini*al	values	
•  d.	Covariance	structure	(“exponen*al”,	
“gaussian”,	“matern”,	etc)	

•  e.	Number	of	MCMC	itera*ons	/	burn-in,	etc.	



Example	with	WA	SWE	data	
#	This	syntax	is	dependent	on	model	parameters.	See	vignege	
priors	<-	list("beta.Norm"=list(rep(0,p),	diag(1000,p)),	"phi.Unif"=c(3/1,	
3/0.1),	"sigma.sq.IG"=c(2,	2),	"tau.sq.IG"=c(2,	0.1))	
	
#	Phi	is	spa*al	scale	parameter,	sigma.sq	is	spa*al	variance,	tau.sq	=	residual	
star*ng	<-	list("phi"=3/0.5,	"sigma.sq"=50,	"tau.sq"=1)	
	
#	variance	of	normal	proposals	for	Metropolis	algorithm	
tuning	<-	list("phi"=0.1,	"sigma.sq"=0.1,	"tau.sq"=0.1)	
	
m.1	<-	spLM(y~X-1,	coords=cords,n.samples=10000,	cov.model	=	
"exponen*al",	priors=priors,	tuning=tuning,	star*ng=star*ng)	



Coefficients	need	to	be	extracted	

##recover	beta	and	spa*al	random	effects	
burn.in	<-	5000	
m.1	<-	spRecover(m.1,	start=burn.in,	verbose=FALSE)	



Standard	MCMC	diagnos*cs	

•  Output	is	of	class	‘mcmc’	



Other	spa*al	models	in	spBayes	
Non-Gaussian	errors	
spGLM	

Mul*variate	
spMvLM()	
spMvGLM()	

Dynamic	linear	model	(DLM)	
spDynLM	



Method	3:	models	in	INLA	

•  INLA	=	Integrated	Nested	Laplace	Approxima*on	

•  R-INLA	solware	=	interface	between	R	and	the	
GMRFLib	C	library,	etc.		

•  Get	it	here:	
				hgp://www.r-inla.org/	



Mo*va*on	of	INLA	

•  Some	problems	contain	simple	spa*al	structure	
–  e.g.	the	harbor	seal	data	in	MARSS()	with	only	5	–	7	*me	
series	

•  Others	are	much	more	complex	
– WA	SWE	data	
–  Fisheries	survey	data	(1000s	of	points)	

•  Including	*me-varying	spa*al	fields	becomes	very	
computa*onally	difficult	

•  Doing	all	of	the	above	in	a	Bayesian	se#ng	can	be	
prohibi*ve,	but	we	can	use	Laplace	approxima*on	



Varying	spa*al	fields	example:	eulachon-shrimp	bycatch	
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INLA’s	approxima*on:	SNOTEL	data	

How	many	points	fall	on	ver*ces?	Is	the	boundary	area	large	enough?	Choosing	
this	must	be	done	very	carefully!		



Es*ma*on	done	via	maximum	likelihood	

•  Es*mates	seems	similar	to	those	from	gls()	
and	spBayes()	
•  Year	included	as	numeric	here	(not	significant)	

•  Alterna*vely,	we	can	include	year	in	spa*al	
field	

•  Year	can	also	be	included	as	factor	
	



Projec*ng	INLA	es*mates	to	surface	



Fixed	effect	(factor)	es*mates	



Spa*al	SWE	fields	by	year	



Addi*onal	output	/	diagnos*cs	

•  Plots	of	observed	v	figed	values	

•  Predic*on	to	new	loca*ons	

•  Samples	from	posterior	distribu*on	via	
Laplace	approxima*on	



Approach	4:	Spa*al	GAMs	

•  Previous	approaches	modeled	errors	as	
correlated	

•  Spa*al	GAMs	generally	model	mean	as	
spa*ally	correlated	

•  Somewhat	analogous	to	AR	vs	MA	models	



Examples	of	2D	GAMs	

g	=	gam(y	~	s(lat,	lon))	#	basis	spline	
g	=	gam(y	~	te(lat,	lon))	#	tensor	product	spline	
	
g	=	gam(y	~	te(lat,	lon,	by	=	as.factor(year))	#	
smooths	by	year	
	
	
	
	
	



Examples	of	recent	NOAA	work		
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