Dealing with complicated data in time series models

Eric Ward Feb 16 2017

Missing data

Data may be missing (NAs) in response or predictors

 Some models (functions) require complete datasets

• Variety of interpolation methods

Example dataset

• Lake WA pH

Simple approach

• Linear interpolation

[3, NA, 4.3, 5.4, NA, 6.1]

- 2nd observation becomes (3+4.3)/2
- 5th observation becomes (5.4+6.1)/2
- Trickier when more data is missing, [NA, NA, NA, 5.4, NA, 6.1]

Linear interpolation for longer gaps

library(zoo) na.approx() function Example for our Lake WA data:

y_new = y

y_new[is.na(y)] = na.approx(y,na.rm=FALSE)
[is.na(y)]

* Missing values filled in via linear interpolation

Imputed values in red

Two useful extensions

maxgap na.approx(y,na.rm=FALSE, maxgap = 3)

rule (inherited from approx()): should data be extrapolated (2) or not (1)

na.approx(y,na.rm=FALSE, maxgap = 3, rule=2)
Data point closest is used for extrapolation

Alternative linear interpolation

 Use rollmean() function in zoo library to customize the rolling window

rollmean(y, k=3, align = c("center", "left", "right"))

Alternatives to linear interpolation

• Splines (think GAMs)

• Fit the spline yourself

Or use other 'na' functions
 na.locf() – last observation carried forward
 na.spline() – interpolate with spline

Spline(blue), linear (red)

 Beware near end of time series / near lots of missing data

Other interpolation approaches

 imputeTS: wrapper for approx(), contains other splines

Splines:
 smooth.spline()
 gam (mcv)

Is interpolating a good idea?

One consequence is falsely increased precision

- As example we can fit a univariate state space model (with MARSS) to the three datasets:
- Raw (including missing values)
- Interpolated (linear)
- Interpolated (spline)

How do variances compare?

• Linear interpolation = low observation error

Model	Q	R
Raw	0.0161	0.0148
Linear interp	0.01079	0.01389
Spline interp	0.0161	0.0148

Missing covariates

• Generally, missing covariates can be more of a problem (e.g. state space models, DFAs, etc)

 Same approaches can be used for interpolation

• Or in a Bayesian framework, the missing values can be assigned priors

When missing data are zeros

Lake WA Daphnia Daphnia

Options

• Throw out observations

• Transform your data

Work with more complicated statistical models

Data transformations

 Ln(y + small number) is one of the more common approaches

BUT choice of small number has impact on results

• What is adding a constant going to do to observation or process variances?

Adding constants to Daphnia

Constant	R	Q	U
1	0.002973	0.462834	0.000901
0.1	0.00523	1.20592	0.00419
0.01	0.00881	2.03384	0.00954
0.001	0.0187	2.9671	0.0153
0.0001	0.0714	4.3777	0.0212
0.00001	0.7155	5.62	0.0275

Alternate statistical distributions

 Use time series (MARSS) or other statistical model for positive values > 0

Apply logistic regression (or more complicated model) to model zeros

Delta-GLMs

Density of marine fishes almost always fits this pattern (zero inflated)

ZIP (3)

Delta-GLM or 'hurdle models'

- Breaks the response into 2 parts
 - Presence / absence
 - Positive density
- 2 separate GLMs
 - May include different covariates
- If we include random effects / shared terms, they usually aren't correlated across models
 - Different data + different link functions = weird interpretation
 - Results from both models combined for estimates of total density

Example with Daphnia

```
Example code for GLM
v int = ifelse(y > 0, 1, 0)
mod = glm(y int \sim seq(1, length(y int)),
family="binomial")
pred = predict(mod,
newdata=data.frame(1:396), type="response",
se.fit=T)
```


Positive model

- Convert 0s to NAs
 y[which(y==0)]=NA
- Fit MARSS model
 mod = MARSS(log(y))
- Predictions (log space)
 exp(c(mod\$states))

Estimating total density

• Multiply Pr(present) * E[density|present]

- Standard errors more complicated
 - Delta method
 - Monte Carlo simulation, etc

Combined model: E(present) * E(pos | present)

Other types of response data may be

We can model the response as function of predictors using link functions

• Defaults in GLMs

• Binomial data (logit link)

 $logit(p_i) = \log (p_i/(1-p_i) = BX_i)$

 Poisson, Negative Binomial, Gamma, Lognormal (log link)

 $log(u_i) = BX_i$

 Note that these formulas don't include additional error (like regression)

GLMMs

Including additional variation turns GLMs -> GLMMs

$$logit(p_i) = log\left(\frac{p_i}{1-p_i}\right) = BX_i + e_i$$

$$log(u_i) = BX_i + e_i$$

 $e_i \sim Normal(0, \sigma)$

- More data hungry, but flexible
 - Random effects allow us to turn ordinary GLMMs into time series models or models with spatial effects

Where have we seen this before?

$$X_{t+1} = BX_t + e_t$$
$$e_t \sim Normal(0,q)$$
$$logit(p_t) = X_t$$
$$Y_t \sim Bernoulli(p_t)$$

• We could construct a DLM with binomial response (or any other distribution)

Univariate -> multivariate

• For population *i*

$$X_{i,t+1} = BX_{i,t} + e_{i,t}$$

- As in MARSS models, we need to think about how to model the deviations
 - Independent and shared variance across pops?
 - Independent and unique variance across pops?
 - "equalvarcov"
 - Unconstrained
 - Model covariance as spatially correlated

Powerful functions for estimating nonnormal response data

- rstanarm
 - Extension of Bayesian regression, GLMs, GLMMs, etc

glmmTMB (or lme4, bbmle, etc)
 – Fast maximum likelihood estimation

• Same formula syntax as glm(), lm(), etc

BUT

These approaches don't incorporate time series aspect of our data

• Other packages: tscount, etc

And can be included in our function fit_stan()

Example: time series of ecoli

-	neuu(y)				
	year	week	cases		
1	2001	1	5		
2	2001	2	7		
3	2001	3	17		
4	2001	4	18		
5	2001	5	10		
6	2001	6	8		

and(v)

glmmTMB

 glmmTMB(cases ~ week + year, data=y, family="poisson")

But residuals show problem

Not independent, ACF shows they're very correlated

tscount()

mod = tsglm(y, link="log", distr="poisson")

Added complexity

- Observations at time t can be made a function of predictions or observations in previous time steps
- model = list(past_obs = NULL, past_mean = NULL, ...)
- Size of moving window also flexible
- Covariates can be included: time or external predictors

Implementation in stan

- fit_stan has a 'family' argument which can be specifed as
- "gaussian"
- "binomial"
- "poisson"
- "gamma"
- "lognormal"
- "negative-binomial"
- Etc
- Only for the following models: Regression, DLMs, 'MARSS' models

Poisson regression

mod = fit_stan(y, x = model.matrix(lm(y~1)), model="regression", family="poisson")

Index

Implementation of DLM

We'll fit model with time-varying level (mean)

- No covariates included

mod = fit_stan(y, model="dlm-intercept",
family="poisson")

Now capturing data much better!

Predicted

Residuals look much better

• Still negative acf ~ lags 1-2

ACF (residuals)

