# Notes about GLMs

# Data are often not normal



# We can model the response as function of predictors using link functions

Defaults in GLMs

Binomial data (logit link)

$$logit(p_i) = \log (p_i/(1-p_i) = BX_i$$

 Poisson, Negative Binomial, Gamma, Lognormal (log link)

$$log(u_i) = BX_i$$

 Note that these formulas don't include additional error (like regression)

#### **GLMMs**

Including additional variation turns GLMs -> GLMMs

$$logit(p_i) = log\left(\frac{p_i}{1 - p_i}\right) = BX_i + e_i$$
$$log(u_i) = BX_i + e_i$$
$$e_i \sim Normal(0, \sigma)$$

- More data hungry, but flexible
  - Random effects allow us to turn ordinary GLMMs into time series models or models with spatial effects

## Where have we seen this before?

$$X_{t+1} = BX_t + e_t$$
  
 $e_t \sim Normal(0, q)$   
 $logit(p_t) = X_t$   
 $Y_t \sim Bernoulli(p_t)$ 

 We could construct a DLM with binomial response (or any other distribution)

## Univariate -> multivariate

For population i

$$X_{i,t+1} = BX_{i,t} + e_{i,t}$$

- As in MARSS models, we need to think about how to model the deviations
  - Independent and shared variance across pops?
  - Independent and unique variance across pops?
  - "equalvarcov"
  - Unconstrained
  - Model covariance as spatially correlated

### **Delta-GLMs**

 Density of marine fishes almost always fits this pattern (zero inflated)



#### Delta-GLM or 'hurdle models'

- Breaks the response into 2 parts
  - Presence / absence
  - Positive density
- 2 separate GLMs
  - May include different covariates
- If we include random effects / shared terms, they usually aren't correlated across models
  - Different data + different link functions = weird interpretation
  - Results from both models combined for estimates of total density (<u>nwfscDeltaGLM</u>)