Notes about GLMs



Data are often not normal
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We can model the response as function
of predictors using link functions

Defaults in GLMs

Binomial data (logit link)

logit(p;) = log (pi/(1 — p:) = BX;
Poisson, Negative Binomial, Gamma,
Lognormal (log link)

log(u;) = BX;

Note that these formulas don’t include
additional error (like regression)



GLMMs

* Including additional variation turns GLMs ->
GLMMs

logit(p;) = log (%) = BX; + ¢;

log(u;) = BX; + ¢;
e;~Normal(0, o)
 More data hungry, but flexible

— Random effects allow us to turn ordinary GLMMs
into time series models or models with spatial
effects



Where have we seen this before?

Xtv1 = BXy + e
e.~Normal (0, q)
logit(p.) = X;

Y;~Bernoulli(p;)

* We could construct a DLM with binomial
response (or any other distribution)



Univariate -> multivariate

* For population i
Xit+1 = BXit te;¢

* Asin MARSS models, we need to think about
how to model the deviations

— Independent and shared variance across pops?
— Independent and unique variance across pops?
— “equalvarcov”

— Unconstrained

— Model covariance as spatially correlated



Delta-GLMs

* Density of marine fishes almost always fits this
pattern (zero inflated)
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Delta-GLM or ‘hurdle models’

* Breaks the response into 2 parts
— Presence / absence
— Positive density

* 2 separate GLMs
— May include different covariates

* |f we include random effects / shared terms, they
usually aren’t correlated across models

— Different data + different link functions = weird
interpretation

— Results from both models combined for estimates of
total density (nwfscDeltaGLM)




