
Exponential smoothing models
and the forecast package

Eli Holmes

7 February 2017

Load some data to play with
Let’s use the S&P 500 monthly averages. Using the quanmod R
package to load it up.

library(quantmod)
load the S&P 500 data
getSymbols("^GSPC")

[1] "GSPC"

convert to monthly
y = to.monthly(GSPC)$GSPC.Open
convert to ts class from xts
y.mon = as.ts(y, start=c(2007,1))
y = ts(y.mon, frequency = 1)
n = length(y)

Load some data to play with

Time

y.
m

on

2008 2010 2012 2014 2016

10
00

15
00

20
00

Monthly S&P 500

Simple Forecasts: Average

I Average
ŷt+1|t = (y1 + y2 + . . . yt)/t

The mean of the data. Not bad if your data fluctuate around a
mean value.

I Fit yt = µ+ et where et ∼ N(0, σ2) So the errors are i.i.d.
(independent and identically distributed). This is white noise.

Simple Forecasts: Average

Use forecast to create forecasts from average with CIs:

meanf(y, 5, level=95)

Point Forecast Lo 95 Hi 95
123 1525.261 730.9762 2319.546
124 1525.261 730.9762 2319.546
125 1525.261 730.9762 2319.546
126 1525.261 730.9762 2319.546
127 1525.261 730.9762 2319.546

Simple Forecasts: Average

forecast makes it easy to plot your forecasts:

plot(meanf(y, 5), type="l")

Forecasts from Mean

0 20 40 60 80 100 120

10
00

15
00

20
00

Simple Forecasts: Last observed value

ŷt+1|t = yt

This is a surprisingly hard forecast to beat in many situations.
Making the forecast is easy, but how do you come up with the CIs?

I Let’s walk through exactly what our forecast is:

yt = yt−1 + et ,where et ∼ N(0, σ2)

yt (your forecast) is yt−1 plus et (error).

I That is ARIMA(0,1,0), aka a random walk without drift.

yt − yt−1 = et

Simple Forecasts: Last observed value
To get the prediction interval, we need the prediction interval for et .
Let’s say that we know the variance of et . In that case, our
prediction is distributed as follows

yt+1 ∼ N(yt , σ
2)

and the 95% distribution of that is z0.05/2σ. So our forecast is

yt ± z0.05/2σ

The errors are the differences: et = yt − yt−1. There are n− 1. The
estimated variance of et is

1
n − 1

n∑
2

(êt − µ)2 = 1
n − 1

n∑
1

ê2
t

since µ = 0. This is the mean squared error.

mse=mean(diff(y)^2)

Simple Forecasts: Last observed value
The variance of a random walk increases with time:

yt−k − yt ∼ N(0, kσ2)

so for a forecast k steps in the future our forecast is:

yt ± z0.05/2
√

kσ

So in R, the 95% Prediction intervals 1-5 steps ahead are (treating
the estimated variance as true):

zs = qnorm(0.975)*sqrt(mse)
cbind(y[n]-zs*sqrt(1:5), y[n]+zs*sqrt(1:5))

[,1] [,2]
[1,] 2170.657 2400.523
[2,] 2123.051 2448.130
[3,] 2086.521 2484.659
[4,] 2055.725 2515.456
[5,] 2028.593 2542.587

Simple Forecasts: Last observed value

forecast computes these for you with rwf():

rwf(y, 5, level=95)

Point Forecast Lo 95 Hi 95
123 2285.59 2170.657 2400.523
124 2285.59 2123.051 2448.130
125 2285.59 2086.521 2484.659
126 2285.59 2055.725 2515.456
127 2285.59 2028.593 2542.587

Simple Forecasts: Last observed value

plot your forecasts:

plot(rwf(y, 20), type="l")

Forecasts from Random walk

0 20 40 60 80 100 120 140

10
00

15
00

20
00

25
00

Simple Forecasts: Last observed value
Note, forecast treats the variance as known and equal to the
estimated value. Obviously it is an estimate and unknown. The
correct prediction interval includes the uncertainty in your σ2. For
this particular problem, it is the same as the prediction error for
known mean and unknown variance for a normal distribution. You
use a t-distribution with n − 2 degrees of freedom instead of a
standard Normal (meaning mean of 0, var of 1):

yt ± tn−2
0.05/2

√
kσ

zt = qt(0.975, df=n-1)*sqrt(mse)
cbind(qnorml=y[n]-zs*sqrt(1:5), qnormu=y[n]+zs*sqrt(1:5),

qtl=y[n]-zt*sqrt(1:5), qtu= y[n]+zt*sqrt(1:5))

qnorml qnormu qtl qtu
[1,] 2170.657 2400.523 2169.496 2401.684
[2,] 2123.051 2448.130 2121.409 2449.772
[3,] 2086.521 2484.659 2084.510 2486.670
[4,] 2055.725 2515.456 2053.402 2517.778
[5,] 2028.593 2542.587 2025.996 2545.184

For a long time series, it doesn’t matter. For shorter ecological time
series, it is does matter.

Simple Forecasts: Last observed value WITH drift
Now our forecast is:

yt = yt−1 + et ,where et ∼ N(µ, σ2)

The logic behind the calculation of the prediction intervals is the
same except - we estimate the mean µ - the estimate of the
variance of et is different because we are estimating the mean, so
the variance estimate is 1

n−1
∑n

2(êt − ēt)2. That’s just the variance
of the differences.

forecast computes the forecasts and prediction intervals, treating µ
(drift) as unknown and σ2 as known (and equal to estimate).

rwf(y, 2, level=95, drift=TRUE)

Point Forecast Lo 95 Hi 95
123 2292.76 2178.215 2407.305
124 2299.93 2137.271 2462.589

Simple Forecasts: Last observed value WITH drift

plot your forecasts:

plot(rwf(y, 20, drift=TRUE), type="l")

Forecasts from Random walk with drift

0 20 40 60 80 100 120 140

10
00

15
00

20
00

25
00

30
00

Simple Forecasts: Last observed value in season

Forecast is the last value in the same season. Say data are monthly,
the next Jan forecast is the last Jan observed value. If m is the
frequency (12 for monthly), then the forecast is

yt = yt−m + et ,where et N(0, σ2)

This is not so useful since it doesn’t allow you to include drift
(trend). We’ll see more useful season models when we use forecast’s
exponential smoothing models.

Simple Forecasts: Last observed value in season

plot(snaive(y.mon, 20), type="l")

Forecasts from Seasonal naive method

2008 2010 2012 2014 2016 2018

10
00

15
00

20
00

25
00

Assessing forecast error
forecast has the accuracy() function which will compute a variety of
standard metrics using predictions and test data.

y2 <- window(y,start=1,end=n-12)
plot(rwf(y2, 12,drift=TRUE), type="l")
lines(y)

Forecasts from Random walk with drift

0 20 40 60 80 100 120

10
00

15
00

20
00

Assessing forecast error: common metrics

Here are common ones. The accuracy() function has a few others.

I RMSE: root mean square error
I MAE mean absolute error
I MAPE mean absolute percentage error
I MASE mean absolute scaled error (useful for meta analyses)

Assessing forecast error: common metrics
y2 <- window(y,start=1,end=n-12)
fit1 <- meanf(y2,h=12)
fit2 <- rwf(y2,h=12)
fit3 <- rwf(y2,h=12,drift=TRUE)

y3 <- window(y, start=n-11)
vals=c("RMSE", "MAE", "MAPE", "MASE")
rbind(

meanf=accuracy(fit1, y3)[2,vals],
rwf = accuracy(fit2, y3)[2,vals],
rwf.drift=accuracy(fit3, y3)[2,vals])

RMSE MAE MAPE MASE
meanf 683.0320 677.0857 31.578710 14.108030
rwf 218.2028 198.8084 9.144221 4.142452
rwf.drift 183.8597 168.6327 7.762764 3.513698

Simple exponential smoothing: no trend
Exponential smoothing is similar to the random walk forecast but
with adjustable weight on the observations and allows time-varying
trend and season. The simple exponential forecast is:

ŷt+1|t = lt
The model is a type of state-space model and DLM, but with a
single error term shared across both the process and observation.
We’ve been working with multi-error models so far.

yt = lt−1 + et

lt = lt−1 + αet

If α = 1 you revert to the random walk without drift model. α
allows you to adjust how much weight is given to the observations
in the past. If α is close to 0 then a lot of weight is given to the
past and the forecast is smoother. The weight falls off exponentially,
thus the name exponential smoothing.

Simple exponential smoothing: no trend
forecast has the ets() function to fit these models. The model
argument specifies the form of the exponential smoothing model.
Form is (Error, Trend, Seasonal).

I “ANN” = additive error, no trend, no season This is the simple
exponential smoothing model

ets.simple = ets(y, model="ANN")
ets.simple

ETS(A,N,N)
##
Call:
ets(y = y, model = "ANN")
##
Smoothing parameters:
alpha = 0.9999
##
Initial states:
l = 1418.3295
##
sigma: 58.4
##
AIC AICc BIC
1584.516 1584.719 1592.928

Simple exponential smoothing: no trend
The estimate of α is close to 1, so we have the random walk model
and the estimated level is just the data. No smoothing.

plot(ets.simple)

10
00

20
00

ob
se

rv
ed

10
00

20
00

0 20 40 60 80 100 120

le
ve

l

Time

Decomposition by ETS(A,N,N) method

Simple exponential smoothing: no trend
We can easily forecast with this fitted model. Note I plotted the
states (aka level, aka lt) over the data. You don’t see the data line
(black) since α = 1.

plot(forecast(ets.simple))
lines(ets.simple$states, col="red")

Forecasts from ETS(A,N,N)

0 20 40 60 80 100 120

10
00

15
00

20
00

25
00

Simple exponential smoothing: no trend
We can pass in α for control the smoothing. I plotted the states
over the data, and now you see that the estimated level is smooth.

ets.simple2 = ets(y, model="ANN", alpha=0.1)
plot(forecast(ets.simple2))
lines(ets.simple2$states, col="red")

Forecasts from ETS(A,N,N)

0 20 40 60 80 100 120

10
00

15
00

20
00

25
00

Exponential smoothing with trend
The forecast is a combination of two estimated states, the level
term (lt) and a trend term (bt).

ŷt+1|t = lt + bt

yt = lt−1 + bt−1 + et (1)
lt = lt−1 + bt−1 + αet (2)

bt = bt−1 + βet (3)

yt =
[
1 1

] [
l
b

]
t−1

+ et

[
l
b

]
t

=
[
1 1
1 0

] [
l
b

]
t−1

+
[
α
β

]
et

Exponential smoothing with trend
We fit this model using “AAN” to specify additive trend model.

ets.trend = ets(y, model="AAN")
ets.trend

ETS(A,A,N)
##
Call:
ets(y = y, model = "AAN")
##
Smoothing parameters:
alpha = 0.9999
beta = 1e-04
##
Initial states:
l = 1433.4643
b = 7.1875
##
sigma: 58.0012
##
AIC AICc BIC
1586.844 1587.361 1600.864

Exponential smoothing with trend
When we forecast with this model, we see that a trend is estimated.
However α is estimated to be 1 and β is about 0, so it’s just fitting
a random with with fixed trend.

plot(forecast(ets.trend,50))
lines(ets.trend$states[,1], col="red")

Forecasts from ETS(A,A,N)

0 50 100 150

10
00

15
00

20
00

25
00

30
00

35
00

Exponential smoothing with trend
We can adjust the amount of smoothing for our level and trend.

ets.trend2 = ets(y, model="AAN", alpha=.5, beta=.05)
plot(forecast(ets.trend2,50))
lines(ets.trend2$states[,1], col="red")

Forecasts from ETS(A,Ad,N)

0 50 100 150

10
00

15
00

20
00

25
00

30
00

Exponential smoothing with season and trend

The forecast is a combination of three estimated states, the level
term (lt) and a trend term (bt).

ŷt+1|t = lt + bt + st−m

yt = lt−1 + bt−1 + st−m + et (4)
lt = lt−1 + bt−1 + αet (5)

bt = bt−1 + βetst = st−m + γet (6)

This is a very flexible model. You might want to fix β or γ to
constrain the amount of time-variation or smoothing you allow.

Exponential smoothing with season and trend
Fit this model using “AAA” to specify additive trend model with
additive season model. You need to use the ts object with the
monthly season.

ets.season = ets(y.mon, model="AAA")
ets.season

ETS(A,A,A)
##
Call:
ets(y = y.mon, model = "AAA")
##
Smoothing parameters:
alpha = 0.9999
beta = 0.0469
gamma = 1e-04
##
Initial states:
l = 1584.0377
b = -19.4011
s=-1.2567 1.8109 -17.6584 -8.0889 16.7726 -0.2579
23.9163 31.9492 8.1235 -21.4869 -30.182 -3.6417
##
sigma: 57.2038
##
AIC AICc BIC
1607.466 1613.350 1655.134

Exponential smoothing with season and trend
10

00
15

00
20

00

ob
se

rv
ed

10
00

15
00

20
00

le
ve

l

−
30

−
10

0
10

20

sl
op

e

−
30

−
10

10
30

2008 2010 2012 2014 2016

se
as

on

Time

Decomposition by ETS(A,A,A) method

Exponential smoothing with season and trend
When we forecast with this model, we see that the forecast is wavy.
That’s the seasonal effect.

plot(forecast(ets.season,3*12))

Forecasts from ETS(A,A,A)

2008 2010 2012 2014 2016 2018 2020

10
00

20
00

30
00

40
00

Exponential smoothing with season and trend
We can adjust the amount of smoothing for our season effect. Now
the season effect varies in time.

ets.season2 = ets(y.mon, model="AAA", gamma=.5)
plot(ets.season2)

10
00

20
00

ob
se

rv
ed

10
00

20
00

le
ve

l

6.
78

6.
84

sl
op

e

−
10

0
0

2008 2010 2012 2014 2016

se
as

on

Time

Decomposition by ETS(A,A,A) method

Summary
forecast has many other useful functions for forecasting and the
ets() function has many other options, such as multiplicative error
models.

I The Hyndman & Athanasopoulos’s open-access text is very
accessible and shows many code examples:
https://www.otexts.org/fpp

I The package treats the variance as true instead of estimated for
the prediction intervals (at least for the random walk). If your
time series is long, that’s probably fine. If your time series is
short, that can cause your prediction intervals to be too narrow.

I If your time series is short, you need to estimate the initial
state most likely.

I Always test your statistical approach on simulated data.
I The section on Advanced forecasting methods talks about the

types of models we’ve been using Fish 507: dynamic regression
models, vector autoregressions (MAR), and hierarchical
time-series models.

https://www.otexts.org/fpp

