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Load some data to play with
Let’s use the S&P 500 monthly averages. Using the quanmod R
package to load it up.

library(quantmod)
# load the S&P 500 data
getSymbols("^GSPC")

## [1] "GSPC"

# convert to monthly
y = to.monthly(GSPC)$GSPC.Open
# convert to ts class from xts
y.mon = as.ts(y, start=c(2007,1))
y = ts(y.mon, frequency = 1)
n = length(y)
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Simple Forecasts: Average

I Average
ŷt+1|t = (y1 + y2 + . . . yt)/t

The mean of the data. Not bad if your data fluctuate around a
mean value.

I Fit yt = µ+ et where et ∼ N(0, σ2) So the errors are i.i.d.
(independent and identically distributed). This is white noise.



Simple Forecasts: Average

Use forecast to create forecasts from average with CIs:

meanf(y, 5, level=95)

## Point Forecast Lo 95 Hi 95
## 123 1525.261 730.9762 2319.546
## 124 1525.261 730.9762 2319.546
## 125 1525.261 730.9762 2319.546
## 126 1525.261 730.9762 2319.546
## 127 1525.261 730.9762 2319.546



Simple Forecasts: Average

forecast makes it easy to plot your forecasts:

plot(meanf(y, 5), type="l")
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Simple Forecasts: Last observed value

ŷt+1|t = yt

This is a surprisingly hard forecast to beat in many situations.
Making the forecast is easy, but how do you come up with the CIs?

I Let’s walk through exactly what our forecast is:

yt = yt−1 + et ,where et ∼ N(0, σ2)

yt (your forecast) is yt−1 plus et (error).

I That is ARIMA(0,1,0), aka a random walk without drift.

yt − yt−1 = et



Simple Forecasts: Last observed value
To get the prediction interval, we need the prediction interval for et .
Let’s say that we know the variance of et . In that case, our
prediction is distributed as follows

yt+1 ∼ N(yt , σ
2)

and the 95% distribution of that is z0.05/2σ. So our forecast is

yt ± z0.05/2σ

The errors are the differences: et = yt − yt−1. There are n− 1. The
estimated variance of et is

1
n − 1

n∑
2

(êt − µ)2 = 1
n − 1

n∑
1

ê2
t

since µ = 0. This is the mean squared error.

mse=mean(diff(y)^2)



Simple Forecasts: Last observed value
The variance of a random walk increases with time:

yt−k − yt ∼ N(0, kσ2)

so for a forecast k steps in the future our forecast is:

yt ± z0.05/2
√

kσ

So in R, the 95% Prediction intervals 1-5 steps ahead are (treating
the estimated variance as true):

zs = qnorm(0.975)*sqrt(mse)
cbind(y[n]-zs*sqrt(1:5), y[n]+zs*sqrt(1:5))

## [,1] [,2]
## [1,] 2170.657 2400.523
## [2,] 2123.051 2448.130
## [3,] 2086.521 2484.659
## [4,] 2055.725 2515.456
## [5,] 2028.593 2542.587



Simple Forecasts: Last observed value

forecast computes these for you with rwf():

rwf(y, 5, level=95)

## Point Forecast Lo 95 Hi 95
## 123 2285.59 2170.657 2400.523
## 124 2285.59 2123.051 2448.130
## 125 2285.59 2086.521 2484.659
## 126 2285.59 2055.725 2515.456
## 127 2285.59 2028.593 2542.587



Simple Forecasts: Last observed value

plot your forecasts:

plot(rwf(y, 20), type="l")

Forecasts from Random walk

0 20 40 60 80 100 120 140

10
00

15
00

20
00

25
00



Simple Forecasts: Last observed value
Note, forecast treats the variance as known and equal to the
estimated value. Obviously it is an estimate and unknown. The
correct prediction interval includes the uncertainty in your σ2. For
this particular problem, it is the same as the prediction error for
known mean and unknown variance for a normal distribution. You
use a t-distribution with n − 2 degrees of freedom instead of a
standard Normal (meaning mean of 0, var of 1):

yt ± tn−2
0.05/2

√
kσ

zt = qt(0.975, df=n-1)*sqrt(mse)
cbind(qnorml=y[n]-zs*sqrt(1:5), qnormu=y[n]+zs*sqrt(1:5),

qtl=y[n]-zt*sqrt(1:5), qtu= y[n]+zt*sqrt(1:5))

## qnorml qnormu qtl qtu
## [1,] 2170.657 2400.523 2169.496 2401.684
## [2,] 2123.051 2448.130 2121.409 2449.772
## [3,] 2086.521 2484.659 2084.510 2486.670
## [4,] 2055.725 2515.456 2053.402 2517.778
## [5,] 2028.593 2542.587 2025.996 2545.184

For a long time series, it doesn’t matter. For shorter ecological time
series, it is does matter.



Simple Forecasts: Last observed value WITH drift
Now our forecast is:

yt = yt−1 + et ,where et ∼ N(µ, σ2)

The logic behind the calculation of the prediction intervals is the
same except - we estimate the mean µ - the estimate of the
variance of et is different because we are estimating the mean, so
the variance estimate is 1

n−1
∑n

2(êt − ēt)2. That’s just the variance
of the differences.

forecast computes the forecasts and prediction intervals, treating µ
(drift) as unknown and σ2 as known (and equal to estimate).

rwf(y, 2, level=95, drift=TRUE)

## Point Forecast Lo 95 Hi 95
## 123 2292.76 2178.215 2407.305
## 124 2299.93 2137.271 2462.589



Simple Forecasts: Last observed value WITH drift

plot your forecasts:

plot(rwf(y, 20, drift=TRUE), type="l")
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Simple Forecasts: Last observed value in season

Forecast is the last value in the same season. Say data are monthly,
the next Jan forecast is the last Jan observed value. If m is the
frequency (12 for monthly), then the forecast is

yt = yt−m + et ,where et N(0, σ2)

This is not so useful since it doesn’t allow you to include drift
(trend). We’ll see more useful season models when we use forecast’s
exponential smoothing models.



Simple Forecasts: Last observed value in season

plot(snaive(y.mon, 20), type="l")
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Assessing forecast error
forecast has the accuracy() function which will compute a variety of
standard metrics using predictions and test data.

y2 <- window(y,start=1,end=n-12)
plot(rwf(y2, 12,drift=TRUE), type="l")
lines(y)

Forecasts from Random walk with drift
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Assessing forecast error: common metrics

Here are common ones. The accuracy() function has a few others.

I RMSE: root mean square error
I MAE mean absolute error
I MAPE mean absolute percentage error
I MASE mean absolute scaled error (useful for meta analyses)



Assessing forecast error: common metrics
y2 <- window(y,start=1,end=n-12)
fit1 <- meanf(y2,h=12)
fit2 <- rwf(y2,h=12)
fit3 <- rwf(y2,h=12,drift=TRUE)

y3 <- window(y, start=n-11)
vals=c("RMSE", "MAE", "MAPE", "MASE")
rbind(

meanf=accuracy(fit1, y3)[2,vals],
rwf = accuracy(fit2, y3)[2,vals],
rwf.drift=accuracy(fit3, y3)[2,vals])

## RMSE MAE MAPE MASE
## meanf 683.0320 677.0857 31.578710 14.108030
## rwf 218.2028 198.8084 9.144221 4.142452
## rwf.drift 183.8597 168.6327 7.762764 3.513698



Simple exponential smoothing: no trend
Exponential smoothing is similar to the random walk forecast but
with adjustable weight on the observations and allows time-varying
trend and season. The simple exponential forecast is:

ŷt+1|t = lt
The model is a type of state-space model and DLM, but with a
single error term shared across both the process and observation.
We’ve been working with multi-error models so far.

yt = lt−1 + et

lt = lt−1 + αet

If α = 1 you revert to the random walk without drift model. α
allows you to adjust how much weight is given to the observations
in the past. If α is close to 0 then a lot of weight is given to the
past and the forecast is smoother. The weight falls off exponentially,
thus the name exponential smoothing.



Simple exponential smoothing: no trend
forecast has the ets() function to fit these models. The model
argument specifies the form of the exponential smoothing model.
Form is (Error, Trend, Seasonal).

I “ANN” = additive error, no trend, no season This is the simple
exponential smoothing model

ets.simple = ets(y, model="ANN")
ets.simple

## ETS(A,N,N)
##
## Call:
## ets(y = y, model = "ANN")
##
## Smoothing parameters:
## alpha = 0.9999
##
## Initial states:
## l = 1418.3295
##
## sigma: 58.4
##
## AIC AICc BIC
## 1584.516 1584.719 1592.928



Simple exponential smoothing: no trend
The estimate of α is close to 1, so we have the random walk model
and the estimated level is just the data. No smoothing.

plot(ets.simple)

10
00

20
00

ob
se

rv
ed

10
00

20
00

0 20 40 60 80 100 120

le
ve

l

Time

Decomposition by ETS(A,N,N) method



Simple exponential smoothing: no trend
We can easily forecast with this fitted model. Note I plotted the
states (aka level, aka lt) over the data. You don’t see the data line
(black) since α = 1.

plot(forecast(ets.simple))
lines(ets.simple$states, col="red")
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Simple exponential smoothing: no trend
We can pass in α for control the smoothing. I plotted the states
over the data, and now you see that the estimated level is smooth.

ets.simple2 = ets(y, model="ANN", alpha=0.1)
plot(forecast(ets.simple2))
lines(ets.simple2$states, col="red")
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Exponential smoothing with trend
The forecast is a combination of two estimated states, the level
term (lt) and a trend term (bt).

ŷt+1|t = lt + bt

yt = lt−1 + bt−1 + et (1)
lt = lt−1 + bt−1 + αet (2)

bt = bt−1 + βet (3)

yt =
[
1 1

] [
l
b

]
t−1

+ et

[
l
b

]
t

=
[
1 1
1 0

] [
l
b

]
t−1

+
[
α
β

]
et



Exponential smoothing with trend
We fit this model using “AAN” to specify additive trend model.

ets.trend = ets(y, model="AAN")
ets.trend

## ETS(A,A,N)
##
## Call:
## ets(y = y, model = "AAN")
##
## Smoothing parameters:
## alpha = 0.9999
## beta = 1e-04
##
## Initial states:
## l = 1433.4643
## b = 7.1875
##
## sigma: 58.0012
##
## AIC AICc BIC
## 1586.844 1587.361 1600.864



Exponential smoothing with trend
When we forecast with this model, we see that a trend is estimated.
However α is estimated to be 1 and β is about 0, so it’s just fitting
a random with with fixed trend.

plot(forecast(ets.trend,50))
lines(ets.trend$states[,1], col="red")
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Exponential smoothing with trend
We can adjust the amount of smoothing for our level and trend.

ets.trend2 = ets(y, model="AAN", alpha=.5, beta=.05)
plot(forecast(ets.trend2,50))
lines(ets.trend2$states[,1], col="red")
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Exponential smoothing with season and trend

The forecast is a combination of three estimated states, the level
term (lt) and a trend term (bt).

ŷt+1|t = lt + bt + st−m

yt = lt−1 + bt−1 + st−m + et (4)
lt = lt−1 + bt−1 + αet (5)

bt = bt−1 + βetst = st−m + γet (6)

This is a very flexible model. You might want to fix β or γ to
constrain the amount of time-variation or smoothing you allow.



Exponential smoothing with season and trend
Fit this model using “AAA” to specify additive trend model with
additive season model. You need to use the ts object with the
monthly season.

ets.season = ets(y.mon, model="AAA")
ets.season

## ETS(A,A,A)
##
## Call:
## ets(y = y.mon, model = "AAA")
##
## Smoothing parameters:
## alpha = 0.9999
## beta = 0.0469
## gamma = 1e-04
##
## Initial states:
## l = 1584.0377
## b = -19.4011
## s=-1.2567 1.8109 -17.6584 -8.0889 16.7726 -0.2579
## 23.9163 31.9492 8.1235 -21.4869 -30.182 -3.6417
##
## sigma: 57.2038
##
## AIC AICc BIC
## 1607.466 1613.350 1655.134



Exponential smoothing with season and trend
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Exponential smoothing with season and trend
When we forecast with this model, we see that the forecast is wavy.
That’s the seasonal effect.

plot(forecast(ets.season,3*12))
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Exponential smoothing with season and trend
We can adjust the amount of smoothing for our season effect. Now
the season effect varies in time.

ets.season2 = ets(y.mon, model="AAA", gamma=.5)
plot(ets.season2)
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Summary
forecast has many other useful functions for forecasting and the
ets() function has many other options, such as multiplicative error
models.

I The Hyndman & Athanasopoulos’s open-access text is very
accessible and shows many code examples:
https://www.otexts.org/fpp

I The package treats the variance as true instead of estimated for
the prediction intervals (at least for the random walk). If your
time series is long, that’s probably fine. If your time series is
short, that can cause your prediction intervals to be too narrow.

I If your time series is short, you need to estimate the initial
state most likely.

I Always test your statistical approach on simulated data.
I The section on Advanced forecasting methods talks about the

types of models we’ve been using Fish 507: dynamic regression
models, vector autoregressions (MAR), and hierarchical
time-series models.

https://www.otexts.org/fpp

