An introduction to Dynamic Linear Models

Mark Scheuerell

FISH 507 – Applied Time Series Analysis

31 January 2017

Dynamic linear models (DLMs)

- DLMs are another form of MARSS model
- But, their underlying structure is different from others we've examined
- General idea is to allow for "evolution" of parameters over time
- Can be univariate (y_t) or multivariate (\mathbf{y}_t) in the response

References for DLMs

- Petris G, Petrone S, Campagnoli P. 2009. Dynamic Linear Models with R. Springer, New York
- Pole A, West M, Harrison J. 1994 Applied Bayesian Forecasting and Time Series Analysis. Chapman & Hall, New York
- Cottingham KL, Rusak JA, Leavitt PR. 2000. Increased ecosystem variability and decreased predictability following fertilisation: evidence from paleolimnology. *Ecol. Lett.* 3: 340-348
- Lamon EC, Carpenter SR, Stow CA. 1998. Forecasting PCB concentrations in Lake Michigan salmonids: a dynamic linear model approach. *Ecol. Appl.* 8: 659-668
- Scheuerell MD, Williams JG. 2005. Forecasting climate-induced changes in the survival of Snake River spring/summer Chinook salmon. *Fish. Ocean*. 14: 448-457
- Schindler DE, Rogers DE, Scheuerell MD, Abrey CA. 2005. Effects of changing climate on zooplankton and juvenile sockeye salmon growth in southwestern Alaska. *Ecology* 86: 198-209

Simple linear regression

- Let's begin with static (simple) linear regression with Gaussian errors
- The idea is that the ith observation is function of an intercept and explanatory variable(s)

$$y_i = \alpha + \beta F_i + v_i$$
 $v_i \sim N(0, \sigma^2)$

• Importantly, the index i has no explicit/implicit meaning—shuffling (y_i, F_i) pairs has no effect on parameter estimation or interpretation

Linear regression in matrix form

We can write the model in matrix notation

$$y_{i} = \alpha + \beta F_{i} + v_{i}$$

$$y_{i} = \left(1\right) \underbrace{F_{i}}_{F_{i}}\right) \left(\alpha\right) + v_{i}$$

$$y_{i} = \mathbf{F}_{i}^{T} \mathbf{\theta} + v_{i}$$

$$\text{where } \mathbf{F}_{i}^{T} = \left(1 + F_{i}\right) & \mathbf{\theta} = \left(\alpha + \beta\right)^{T}$$

Dynamic linear model*

 In a dynamic linear model, the regression parameters change over time, so we write

$$y_i = \mathbf{F}_i^{\mathrm{T}} \mathbf{\theta} + v_i \qquad (static)$$

as

$$y_t = \mathbf{F}_t^{\mathrm{T}} \mathbf{\theta}_t + v_t \qquad (dynamic)$$

- 1) Subscript *t* explicitly acknowledges implicit info in time ordering of data
- 2) Relationship between y and F is unique at every t

Constraining a DLM

 Close examination of the DLM reveals an apparent complication for parameter estimation

$$y_t = \mathbf{F}_t^{\mathrm{T}} \mathbf{\theta}_t + v_t$$

- With only 1 obs at each *t*, we could only hope to estimate 1 parameter (with no uncertainty)!
- To address this, we will constrain the regression parameters to be dependent from t to t+1

$$\mathbf{\theta}_{t} = \mathbf{G}_{t} \mathbf{\theta}_{t-1} + \mathbf{w}_{t} \qquad \mathbf{w}_{t} \sim \mathbf{MVN}(0, \mathbf{Q})$$

In practice, we will typically make **G** time invariant & often set **G** = **I**

DLM in matrix form*

State or "evolution" equation

$$\mathbf{\theta}_t = \mathbf{G}_t \mathbf{\theta}_{t-1} + \mathbf{w}_t$$
 $\mathbf{w}_t \sim \text{MVN}(0, \mathbf{Q})$

Determines how parameters change over time

Observation equation

$$y_t = \mathbf{F}_t^{\mathrm{T}} \mathbf{\theta}_t + v_t \qquad v_t \sim \mathbf{N}(0, r)$$

Relates explanatory variable(s) to the observation

DLM in MARSS notation

State or "evolution" equation

DLM:
$$\left[\mathbf{\theta}_t = \mathbf{G}_t \mathbf{\theta}_{t-1} + \mathbf{w}_t \quad \mathbf{w}_t \sim \text{MVN}(0, \mathbf{Q}) \right]$$

MARSS:
$$\mathbf{x}_t = \mathbf{B}_t \mathbf{x}_{t-1} + \mathbf{w}_t$$
 $\mathbf{w}_t \sim \text{MVN}(0, \mathbf{Q})$

Observation equation

DLM:
$$y_t = \mathbf{F}_t^{\mathrm{T}} \mathbf{\theta}_t + v_t$$
 $v_t \sim \mathbf{N}(0, r)$

MARSS:
$$y_t = \mathbf{Z}_t \mathbf{x}_t + v_t$$
 $v_t \sim N(0, r)$

Contrast in covariate effects

Note: DLMs include covariate effects in obs eqn much differently than other forms of MARSS models

DLM:
$$y_t = \mathbf{F}_t^T \mathbf{\theta}_t + v_t$$
 $v_t \sim N(0, r)$

DLM in MARSS: $y_t = \mathbf{Z}_t \mathbf{x}_t + v_t$ $v_t \sim N(0, r)$

Other MARSS:
$$y_t = \mathbf{Z}_t \mathbf{x}_t + \mathbf{Dd}_t + v_t$$
 $v_t \sim \mathbf{N}(0, r)$

Different forms of DLMs

The univariate regression model is just one example of a DLM—other forms include:

- Stochastic "level" (intercept)
- Stochastic "growth" (trend, bias)
- Seasonal effects (fixed, harmonic)

The most simple univariate DLM

Stochastic "level" (intercept-only)

DLM
$$\begin{cases} \alpha_t = \alpha_{t-1} + w_t & w_t \sim N(0,q) \\ y_t = \alpha_t + v_t & v_t \sim N(0,r) \end{cases}$$

A random walk with observation error

$$\begin{cases} x_t = x_{t-1} + w_t & w_t \sim N(0, q) \\ y_t = x_t + v_t & v_t \sim N(0, r) \end{cases}$$

The most simple univariate DLM

The most simple multivariate DLM

Multiple observations of a single random walk

$$x_{t} = x_{t-1} + w_{t}$$

$$w_{t} \sim N(0, q)$$

$$\mathbf{y}_{t} = \mathbf{Z}x_{t} + \mathbf{v}_{t}$$

$$\mathbf{v}_{t} \sim MVN(0, \mathbf{R})$$

$$\mathbf{Z} = \left(\begin{array}{c} 1 \\ 1 \\ \vdots \\ 1 \end{array}\right)$$

Another simple multivariate DLM

Multiple observations of multiple random walks

$$\mathbf{x}_{t} = \mathbf{x}_{t-1} + \mathbf{w}_{t} \qquad \mathbf{w}_{t} \sim \text{MVN}(0, \mathbf{Q})$$

$$\mathbf{y}_{t} = \mathbf{Z}\mathbf{x}_{t} + \mathbf{v}_{t} \qquad \mathbf{v}_{t} \sim \text{MVN}(0, \mathbf{R})$$

$$\mathbf{Z} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix} = \mathbf{I}$$

Univariate DLM for level & growth

Stochastic "level" with deterministic "growth"

DLM
$$\begin{cases} \alpha_t = \alpha_{t-1} + \gamma + w_t & w_t \sim N(0, q) \\ y_t = \alpha_t + v_t & v_t \sim N(0, r) \end{cases}$$

Random walk with drift

$$\begin{cases} x_t = x_{t-1} + u + w_t & w_t \sim N(0, q) \\ y_t = x_t + v_t & v_t \sim N(0, r) \end{cases}$$

Univariate DLM for level & growth

Stochastic "level" with stochastic "growth"

Level:
$$\alpha_t = \alpha_{t-1} + \gamma_{t-1} + w_t^{(1)}$$
 $w_t^{(1)} \sim N(0, q_1)$

Growth:
$$\gamma_t = \gamma_{t-1} + w_t^{(2)}$$
 $w_t^{(2)} \sim N(0, q_2)$

Level:
$$\alpha_t = 1\alpha_{t-1} + 1\gamma_{t-1} + w_t^{(1)}$$
 $w_t^{(1)} \sim N(0, q_1)$

Level:
$$\alpha_t = 1\alpha_{t-1} + 1\gamma_{t-1} + w_t^{(1)}$$
 $w_t^{(1)} \sim N(0, q_1)$

Growth: $\gamma_t = 0\alpha_{t-1} + 1\gamma_{t-1} + w_t^{(2)}$ $w_t^{(2)} \sim N(0, q_2)$

Level:
$$\begin{bmatrix} \alpha_t \\ \gamma_t \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha_{t-1} \\ \gamma_{t-1} \end{bmatrix} + \begin{bmatrix} w_t^{(1)} \\ w_t^{(2)} \end{bmatrix}$$

Univariate DLM for level & growth

Stochastic "level" with stochastic "growth"

Level:
$$\begin{bmatrix} \alpha_t \\ \gamma_t \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha_{t-1} \\ \gamma_{t-1} \end{bmatrix} + \begin{bmatrix} w_t^{(1)} \\ w_t^{(2)} \end{bmatrix}$$
$$\boldsymbol{\theta}_t \qquad \mathbf{G} \qquad \boldsymbol{\theta}_{t-1} \qquad \mathbf{w}_t$$

DLM:
$$\theta_t = \mathbf{G}\theta_{t-1} + \mathbf{w}_t$$
 $\mathbf{w}_t \sim \text{MVN}(0, \mathbf{Q})$

MARSS:
$$\mathbf{X}_t = \mathbf{B}\mathbf{X}_{t-1} + \mathbf{W}_t$$
 $\mathbf{Q} = \begin{bmatrix} q_1 & 0 \\ 0 & q_2 \end{bmatrix}$

Univariate DLM for level & trend

Observation eqn for stochastic "level" and "growth"

Obs:
$$y_t = \alpha_t + v_t$$
 $v_t \sim N(0, r)$ $y_t = 1\alpha_t + 0\gamma_t + v_t$

Define:
$$\mathbf{F}_t^{\mathrm{T}} = \begin{pmatrix} 1 & 0 \end{pmatrix} \quad \boldsymbol{\theta}_t = \begin{pmatrix} \alpha_t \\ \gamma_t \end{pmatrix}$$

DLM:
$$y_t = \mathbf{F}_t^{\mathrm{T}} \mathbf{\theta}_t + v_t$$

MARSS:
$$y_t = \mathbf{Z}_t \mathbf{x}_t + v_t$$

Univariate DLM for regression

Stochastic "intercept" with stochastic "slope"

Intercept:
$$\begin{bmatrix} \alpha_t \\ \beta_t \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha_{t-1} \\ \beta_{t-1} \end{bmatrix} + \begin{bmatrix} w_t^{(1)} \\ w_t^{(2)} \end{bmatrix}$$
$$\theta_t \qquad \mathbf{G} \qquad \theta_{t-1} \qquad \mathbf{w}_t$$

DLM:
$$\theta_t = \theta_{t-1} + \mathbf{w}_t$$
 $\mathbf{w}_t \sim \text{MVN}(0, \mathbf{Q})$

MARSS:
$$\mathbf{X}_t = \mathbf{X}_{t-1} + \mathbf{W}_t$$

$$\mathbf{w}_{t} \sim \text{MVN}(0, \mathbf{Q})$$

$$\mathbf{Q} = \left[\begin{array}{cc} q_1 & 0 \\ 0 & q_2 \end{array} \right]$$

Univariate DLM for regression

Observation eqn for stochastic "intercept" and "slope"

Obs:
$$y_t = \alpha_t + \beta_t f_t + v_t$$
 $v_t \sim N(0,r)$

Define:
$$\mathbf{F}_{t}^{\mathrm{T}} = \begin{pmatrix} 1 & f_{t} \end{pmatrix} \quad \boldsymbol{\theta}_{t} = \begin{pmatrix} \alpha_{t} \\ \beta_{t} \end{pmatrix}$$

DLM:
$$y_t = \mathbf{F}_t^{\mathrm{T}} \mathbf{\theta}_t + v_t$$

MARSS:
$$y_t = \mathbf{Z}_t \mathbf{x}_t + v_t$$

Forecasting with univariate DLM

- DLMs are often used in a forecasting context where we are interested in a prediction at time t conditioned on data up through time t-1
- Beginning with the distribution of θ at time t-1 conditioned on data through time t-1:

$$\theta_{t-1} \mid y_{1:t-1} \sim \text{MVN}(\pi_{t-1}, \Lambda_{t-1})$$

• Then, the predictive distribution for θ_t given $y_{1:t-1}$ is:

$$\theta_t \mid y_{1:t-1} \sim \text{MVN}\left(\mathbf{G}_t \boldsymbol{\pi}_{t-1}, \mathbf{G}_t \boldsymbol{\Lambda}_{t-1} \mathbf{G}_t^{\mathrm{T}} + \mathbf{Q}\right)$$

• And, the one-step ahead predictive distribution for y_t given $y_{1:t-1}$ is:

$$y_t \mid y_{1:t-1} \sim N(\mathbf{F}_t[\mathbf{G}_t \boldsymbol{\pi}_{t-1}], \mathbf{F}_t[\mathbf{G}_t \boldsymbol{\Lambda}_{t-1} \mathbf{G}_t^{\mathrm{T}} + \mathbf{Q}]\mathbf{F}_t^{\mathrm{T}} + \mathbf{R})$$

Forecasting with univariate DLM

Don't worry! MARSS will make this easy for you.

• Beginning with the distribution of θ at time t-1 conditioned on data through time t-1:

$$\theta_{t-1} \mid y_{1:t-1} \sim \text{MVN}(\pi_{t-1}, \Lambda_{t-1})$$

• Then, the predictive distribution for θ_t given $y_{1:t-1}$ is:

$$\theta_t \mid y_{1:t-1} \sim \text{MVN}\left(\mathbf{G}_t \boldsymbol{\pi}_{t-1}, \mathbf{G}_t \boldsymbol{\Lambda}_{t-1} \mathbf{G}_t^{\mathrm{T}} + \mathbf{Q}\right)$$

• And, the one-step ahead predictive distribution for y_t given $y_{1:t-1}$ is:

$$y_t \mid y_{1:t-1} \sim N(\mathbf{F}_t[\mathbf{G}_t \boldsymbol{\pi}_{t-1}], \mathbf{F}_t[\mathbf{G}_t \boldsymbol{\Lambda}_{t-1} \mathbf{G}_t^{\mathrm{T}} + \mathbf{Q}]\mathbf{F}_t^{\mathrm{T}} + \mathbf{R})$$

Diagnostics for DLMs

- Just as we have seen for other models, diagnostics are an important part of fitting DLMs
- When forecasting, we are often interested in the forecast errors (e_t = observed_t - forecast_t)
- In particular, DLMs have the following assumptions:

1)
$$e_t \sim N(0,\sigma)$$

2)
$$cov(e_t, e_{t-k}) = 0$$

• We can check (1) with a QQ-plot and (2) with an ACF

Multivariate DLM

- Here we will examine multiple responses at once, so we need a multivariate DLM
- First, the obs eqn

$$y_t = \mathbf{F}_t^{\mathrm{T}} \mathbf{\theta}_t + v_t \qquad v_t \sim \mathbf{N}(0, r)$$

becomes

$$\mathbf{y}_{t} = (\mathbf{F}_{t}^{\mathrm{T}} \otimes \mathbf{I}_{n}) \mathbf{\theta}_{t} + \mathbf{v}_{t} \qquad \mathbf{v}_{t} \sim \mathrm{MVN}(\mathbf{0}, \mathbf{R})$$

Multivariate DLM – obs eqn

$$\mathbf{y}_{t} = \left(\mathbf{F}_{t}^{\mathrm{T}} \otimes \mathbf{I}_{n}\right) \mathbf{\theta}_{t} + \mathbf{v}_{t} \qquad \mathbf{v}_{t} \sim \mathrm{MVN}(\mathbf{0}, \mathbf{R})$$

$$\begin{bmatrix} y_{1,t} \\ \vdots \\ y_{n,t} \end{bmatrix} = \begin{bmatrix} 1 & f_t \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Multivariate DLM – obs eqn

$$\mathbf{y}_{t} = \left(\mathbf{F}_{t}^{\mathrm{T}} \otimes \mathbf{I}_{n}\right) \boldsymbol{\theta}_{t} + \mathbf{v}_{t} \qquad \mathbf{v}_{t} \sim \text{MVN}(\mathbf{0}, \mathbf{R})$$

$$\begin{bmatrix} y_{1,t} \\ \vdots \\ y_{n,t} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & f_{t} & 0 & 0 \\ 0 & \ddots & 0 & 0 & \ddots & 0 \\ 0 & 0 & 1 & 0 & 0 & f_{t} \end{bmatrix} \begin{bmatrix} \alpha_{1,t} \\ \vdots \\ \alpha_{n,t} \\ \beta_{1,t} \\ \vdots \\ \beta \end{bmatrix} + \begin{bmatrix} v_{1,t} \\ \vdots \\ v_{n,t} \end{bmatrix}$$

Multivariate DLM – obs eqn

$$\mathbf{y}_{t} = (\mathbf{F}_{t}^{\mathrm{T}} \otimes \mathbf{I}_{n}) \mathbf{\theta}_{t} + \mathbf{v}_{t} \qquad \mathbf{v}_{t} \sim \mathrm{MVN}(\mathbf{0}, \mathbf{R})$$

$$\mathbf{R} = \begin{bmatrix} r_1 & \gamma_{21} & \cdots & \gamma_{n1} \\ \gamma_{12} & r_2 & & \gamma_{n2} \\ \vdots & & \ddots & \vdots \\ \gamma_{1n} & \gamma_{2n} & \cdots & r_n \end{bmatrix} \qquad \mathbf{R} = \begin{bmatrix} r_1 & 0 & \cdots & 0 \\ 0 & r_2 & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & r_n \end{bmatrix}$$

$$\mathbf{R} = \begin{bmatrix} r_1 & 0 & \cdots & 0 \\ 0 & r_2 & & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & r_n \end{bmatrix}$$

The evolution eqn

$$\mathbf{\theta}_t = \mathbf{G}_t \mathbf{\theta}_{t-1} + \mathbf{w}_t$$

$$\mathbf{w}_{t} \sim \text{MVN}(\mathbf{0}, \mathbf{Q})$$

becomes

$$\mathbf{\theta}_{t} = (\mathbf{G}_{t} \otimes \mathbf{I}_{n})\mathbf{\theta}_{t-1} + \mathbf{w}_{t} \qquad \mathbf{w}_{t} \sim \text{MVN}(\mathbf{0}, \mathbf{Q})$$

$$\mathbf{w}_{t} \sim \text{MVN}(\mathbf{0}, \mathbf{Q})$$

$$\mathbf{G}_t = \mathbf{I}_2 \Longrightarrow \mathbf{G}_t \otimes \mathbf{I}_n = \mathbf{I}_{2n}$$

$$\mathbf{\theta}_{t} = \mathbf{\theta}_{t-1} + \mathbf{w}_{t}$$

$$\mathbf{\theta}_{t} = \mathbf{\theta}_{t-1} + \mathbf{w}_{t} \qquad \mathbf{w}_{t} \sim \text{MVN}(\mathbf{0}, \mathbf{Q})$$

$$\begin{bmatrix} \alpha_{1,t} \\ \vdots \\ \alpha_{n,t} \\ \beta_{1,t} \\ \vdots \\ \beta_{n,t} \end{bmatrix} = \begin{bmatrix} \alpha_{1,t-1} \\ \vdots \\ \alpha_{n,t-1} \\ \beta_{1,t-1} \\ \vdots \\ \beta_{n,t-1} \end{bmatrix} + \begin{bmatrix} w_{1,t}^{(\alpha)} \\ \vdots \\ w_{n,t}^{(\alpha)} \\ w_{1,t}^{(\beta)} \\ \vdots \\ w_{n,t}^{(\beta)} \end{bmatrix}$$

$$\mathbf{\theta}_{t} = \mathbf{\theta}_{t-1} + \mathbf{w}_{t}$$

$$\mathbf{\theta}_t = \mathbf{\theta}_{t-1} + \mathbf{w}_t \qquad \mathbf{w}_t \sim \text{MVN}(\mathbf{0}, \mathbf{Q})$$

$$\mathbf{Q} = \begin{bmatrix} \mathbf{Q}^{(\alpha)} & \mathbf{0} \\ \mathbf{0} & \mathbf{Q}^{(\beta)} \end{bmatrix}$$

$$\mathbf{Q} = \begin{bmatrix} \mathbf{Q}^{(\alpha)} & \mathbf{0} \\ \mathbf{0} & \mathbf{Q}^{(\beta)} \end{bmatrix} \qquad \mathbf{Q}^{(\cdot)} = \begin{bmatrix} q_1^{(\cdot)} & c_{21}^{(\cdot)} & \cdots & c_{n1}^{(\cdot)} \\ c_{12}^{(\cdot)} & q_2^{(\cdot)} & & c_{n2}^{(\cdot)} \\ \vdots & & \ddots & \vdots \\ c_{1n}^{(\cdot)} & c_{2n}^{(\cdot)} & \cdots & q_n^{(\cdot)} \end{bmatrix}$$

 $\mathbf{\theta}_t = \mathbf{\theta}_{t-1} + \mathbf{w}_t \qquad \mathbf{w}_t \sim \text{MVN}(\mathbf{0}, \mathbf{Q})$

$$\mathbf{Q} = \begin{bmatrix} \mathbf{Q}_{1}^{(\alpha)} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \ddots & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{Q}_{k}^{(\alpha)} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{Q}_{1}^{(\beta)} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \ddots & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{Q}_{k}^{(\beta)} \end{bmatrix}$$

Topics for lab

- Fitting univariate DLM regression model with MARSS
- Examining "evolution" of parameters
- Examining model fit
- Model diagnostics