An introduction to
Dynamic Linear Models

Mark Scheuerell

FISH 507 — Applied Time Series Analysis

31 January 2017



Dynamic linear models (DLMs)

DLMs are another form of MARSS model

But, their underlying structure is different
from others we’ve examined

General idea is to allow for “evolution” of
parameters over time

* Can be univariate (y,) or multivariate (y,)
in the response
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Simple linear regression

* Let’s begin with static (simple) linear regression
with Gaussian errors

 Theidea is that the ith observation is function of an
intercept and explanatory variable(s)

y, =0+ BF +v, vl.~N(O,02)

* Importantly, the index i has no explicit/implicit
meaning—shuffling (y, F,) pairs has no effect on
parameter estimation or interpretation



Linear regression in matrix form

e We can write the model in matrix notation

y, =+ fF +v,

=(08) § )

Yi = FiTG TV,

where Fl.T=(1 F )& 9=( a [ )T



Dynamic linear model*®

* In a dynamic linear model, the regression parameters change
over time, so we write

y.=F'0+v, (static)
as
i = FtTﬂ@ +V, (dynamic)

1) Subscript t explicitly acknowledges implicit info in
time ordering of data

2) Relationship between y and F is unique at every t

*univariate in the response



Constraining a DLM

Close examination of the DLM reveals an apparent
complication for parameter estimation

Vi = FtTet TV,

With only 1 obs at each t, we could only hope to
estimate 1 parameter (with no uncertainty)!

To address this, we will constrain the regression
parameters to be dependent from t to t+1

0,=Gyf,,+w, W, ~MVN(0.Q)

In practice, we will typically make G time invariant
& oftenset G =1



DLM in matrix form™

State or “evolution” equation
0,=G,0_+w, w, ~MVN(0,Q)

Determines how parameters change over time

Observation equation
yt =FtT9t+Vt vt NN(O’r)

Relates explanatory variable(s) to the observation

*univariate in the response



DLM in MARSS notation

DLM:

MARSS:

DLM:

MARSS: [

State or “evolution” equation

0=G0_ +w,

t -1

w, ~ MVN(0,Q)

X, =Bx _ +Ww,

t -1

w, ~ MVN(0,Q

)

~
J

Observation equation

( T
\yt=Ft et+vt

v, ~N(O,r):

yt =ZtXt+Vt

v, ~N(0,r)




Contrast in covariate effects

Note: DLMs include covariate effects in obs egn much

differently than other form

DLM: v, =[F'0,
DLM in MARSS: vy, =|Z. X,

Other MARSS: y, =7 X,

s of MARSS models

+V vt~N(O,r)
+V vt~N(O,r)

++ v, v, ~N(O,r)



Different forms of DLMs

The univariate regression model is just one
example of a DLM—other forms include:

e Stochastic “level” (intercept)
e Stochastic “growth” (trend, bias)

e Seasonal effects (fixed, harmonic)



The most simple univariate DLM

DLM <

Stochastic “level” (intercept-only)

f

ad =0,_tW, w, ~ N(Ov Q)

MARSS <

yt=at+vt VZNN(O,I")

-

A random walk with observation error

f Xp =X TW, W;’VN(O’Q)

y, =X+, VtNN(O,i")

.



The most simple univariate DLM
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The most simple multivariate DLM

Multiple observations of a single random walk

X, =X_ +W, w, ~N(0,q)

y, =Zx +V, v, ~MVN(0,R)
()

z-| !

1



Another simple multivariate DLM

Multiple observations of multiple random walks

Xz‘ = Xt—l + Wt Wt ~ MVN(O’Q)
y,=ZX +V, v, ~MVN(0,R)
(1 0 ... 0
z=| O 1 e
: ... 0
KO oo 0 1)



Univariate DLM for level & growth

Stochastic “level” with deterministic “growth”

DLM <

f o, =0, _,+y+Ww, W;"’N(OaQ)

MARSS <

L yt=at+vt VZNN(O,]")
Random walk with drift
X, =X, tU+w, w, ~N(0,q)

.

V=X, tV, VtNN(O,i")



Univariate DLM for level & growth

Level:

Growth:

Level:

Growth:

Level:

Growth:

Stochastic “level” with stochastic “growth”

G =0 +Y ,tW,

Ve =

)/tl+w

(2)

al‘ =%

Vi =

la,_ +1)

Oa,_, +1

- )/t -

(1)

1 TW,

o TW,

O

[ G
L ]

(D

(2)

at—l

)/t—l |

wy’ ~N(0,q,)
z( (O %)
w ~N(0,q,)
w? ~N(0,q,)
() '
+ t
w®




Univariate DLM for level & growth

Stochastic “level” with stochastic “growth”
i ] I 1T [ ..o

Level: a, 1 1 - a,_, w,
= +

Growth: Y, 0 1 7. w'?

0, G 0. W,

DLM: 8, =GO,_ +w,  w,~MVN(0,Q)

MARSS: X, =BX,_ +W, Q=




Univariate DLM for level & trend

Observation egn for stochastic “level” and “growth”

Obs: y, =a,+V, v, ~N(0,r)

y, =la, +0y, +v,

o
Define: FZT=(1 O) 9t=( t )
Vi

T
DLM: vy, =F'0, +v,

MARSS: vy, =2 X, +V,



Univariate DLM for regression

Stochastic “intercept” with stochastic “slope”

Intercept: Q. - 1 0 *,_ Wt(l)
= +
Slope: b, 0 1 b, w'?
et G et—l Wt
DLM:  0,=0,_, +W, w, ~MVN(0,Q)
MARSS: X, =X, | +W, q, 0
Q —
0 ¢,




Univariate DLM for regression

Observation egn for stochastic “intercept” and “slope”

Obs: y,=a,+B,f +v, v,~N(0,r)

Define: FIT=( 1 f ) 9,=( Zt )

T
DLM: vy, =F'0, +v,

MARSS: y, =2 X, +V,



Forecasting with univariate DLM

DLMs are often used in a forecasting context where we are interested
in a prediction at time t conditioned on data up through time t-1

Beginning with the distribution of 8 at time t-1 conditioned on data
through time t-1:

O 1y, ~ MVN(ﬂt—l’At—l)
Then, the predictive distribution for 6, given y, ., , is:
T
0,1%,. ~MVN(G,7,,,G A, G +Q)
And, the one-step ahead predictive distribution for y, given y,., ; is:

5, 1%, ~N(F[G7,].F,[GA, G +Q]F +R)



Forecasting with univariate DLM

Don’t worry! MARSS will make this easy for you.

* Beginning with the distribution of 6 at time t-1 conditioned on data
through time t-1:

O 1y, ~ MVN(”t-laAt-l)

4

* Then, the predictive distribution for 6, given y,., , is:

0,1%,4 ~MVN(G,7,,,G,A,_ G/ +Q)

t“7t-1"
* And, the one-step ahead predictive distribution for y, given y, . , is:

¥, 134 ~N(F[G,7 , ].E[G,A, G +Q]E + R)

t 7 t-1



Diagnostics for DLMs

Just as we have seen for other models, diagnostics
are an important part of fitting DLMs

When forecasting, we are often interested in the
forecast errors (e, = observed, - forecast,)

In particular, DLMs have the following assumptions:

1) e, ~ N(O,U)
2) cov(e,,e,_)=0

We can check (1) with a QQ-plot and (2) with an ACF



Multivariate DLM

* Here we will examine multiple responses at
once, so we need a multivariate DLM

* First, the obs eqgn
y=F'0 +v, v, ~N(0,r)
becomes

y,=(F' ®1,)8,+v, v,~MVN(O.R)



Multivariate DLM — obs eqgn

y,=(F'®L)6,+v, v,~MVN(O,R)

-

-)’1,t
' =[1 j;]@
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o O =
—_— O O
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Multivariate DLM — obs eqgn

y,=(F'®L)6,+v, v,~MVN(O,R)
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Multivariate DLM — obs eqgn

y,=(F'®L)6,+v,  v,~MVN(O.R)

h Ya o Va 0 - 0
Yio B Y2 R = 0 r 0
J/1n )/2n ot rn 0 O ot rn




Multivariate DLM — evolution egn

* The evolution egn

0=G0O +w w, ~MVN(0,Q)

[ |
becomes

0,=(G,®I,)06,_+w, w,~MVN(0,Q)
Gt=IZ:Gt®In=12n

0.=0_+w,



Multivariate DLM — evolution egn

0.=0_+w, w, ~MVN(0,Q)
W(O‘)
, , o, Lt
o o W%
n,t n,t—1 n,t
= +
ﬁl,t ﬁl,t—l Wl(/f)
i [))n,t | i /j’n,t—l | W’(f;)




Multivariate DLM — evolution egn

0.=0_+w, w, ~MVN(0,Q)
| | g o - cl)
(a) . . .
Q- Q 0 Q¥ = sz) QQ C,(q;
0 Q(ﬁ) : U
) g




Multivariate DLM — evolution egn

0.=0_+w, w, ~MVN(0,Q)
Q“ 0 0o 0 o0 o0
0 0 0 0 0
o- 0 0 QY o0 o0 o
o 0 o QY o o
o 0 0 0 . 0
0o 0 0 o0 o QY

For k< n “groups”



Topics for lab

Fitting univariate DLM regression model with MARSS
Examining “evolution” of parameters
Examining model fit

Model diagnostics



