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Why include covariates in a model?

* Most ecologists are interested in explaining observed patterns
* Covariates can explain the process that generated the patterns
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Why include covariates in a model?

* You want to forecast something using covariates
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Why include covariates in a model?

* You want to explain correlation in observation errors across
sites or auto-correlation in time

Auto-correlated
observation errors

Model your v(t) as a
AR-1 process
ug. hard numerically

Or if know what is
causing the auto-
correlation, include that
as a covariate.

Correlated
observation errors
across sites (y rows)

Use a R matrix with off-
diagonal terms
ug, ug! hard numerically

Or if know what is
causing the correlation,
include that as a
covariate



Types of covariates

* Numerical

- Continuous (eg, temperature,
salinity)

- Discrete (eg, counts)
* Categorical
- Before/After
- North/South
- January, February, March, ...



Covariates occur in state, obs or both

State equation
x, =Bx, +tu+Cc [+tw, W, ~MVN(0,Q)

(eg, nutrients affects growth, high temps kill)

Observation equation

y,=7Zx, +a+Dd

+v. V.~ MVN(O,R)

!

(eg, vegetation obscures individuals,
temperature affect behavior making animals visible)



Covariates occur in state, obs or both

State equation

X, = th +u Cct +w, W, ~ MVN (0, Q)
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m is number of states; k is number of covariates



Covariates occur in state, obs or both

Observation equation

y,=Zx,ta+Dd +v, v, ~MVN (O, R)
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D is the effect of cov d(t) are the
on state covariates at time t

n is number of obs; k is number of covariates



Covariate effects can differ or not

Different effects Same effect
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Covariates can be seasons or periods

State equation

X, :th +u+Cct +w, W, ~ MVN (0, Q)

Observation equation

y,=Zx,ta+Dd +v, v, ~MVN (O, R)




Seasonal or periodical effects

For example, effects of “season” on 3 states (3 rows)
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Seasonal or periodical effects

For example, effects of “season” on 3 states
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Seasonal or periodical effects

For example, effects of “season” on 3 states
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Non-factor seasons or periods

Treating season as a factor means we have a parameter
for each ‘season’. 4 in the previous example. What if the
factor were ‘month’? Then we’d have 12 parameters!

* We can also estimate “season” via a nonlinear model
* Two common options:
1) Cubic polynomial

2) Fourier frequency



Season as a polynomial

X, :th +u+Cct +w, W, ~ MVN (0, Q)

For months: Cc, = blmt +b2mr2 +b3m¢3
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Season as a Fourier series

Fourier series are paired sets of sine and cosine waves

They are commonly used in time series analysis in the
frequency domain (which we will not cover here)
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Season as a Fourier series

X, :th +u+Cct +w, W, ~ MVN (0, Q)

Our new covariates at time t

Cc, = C;sIn(2nt/p) |+ C,cos(2nt/p)

gq C, H )
e G G U<2_>
5C G gl ‘P

tis time step (1, 2, 3, ..., number of data points)
p is period (e.g., 12 months per year so p=12)



Feb 7t Forecasting with Exponential Smoothing
Models

 We’ll talk about modeling time-varying seasonal effects at
that time.

* Exponential smoothing models are related to Dynamic
Linear Models, which Mark will cover in Week 5

Decomposition by ETS(A,N,A) method
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Dealing with missing covariates™*

* Drop years / shorten time series to remove
missing values

* Interpolate missing values
* Develop process model for the covariates

— Allows us to incorporate observation error
into the covariates (known or unknown)

— Allows us to interpolate but NOT treat that
interpolated value as known. Itis an
estimated value that has uncertainty.



Dealing with missing covariates™*
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(v) are the variates (data)
(c) are the covariates



Dealing with missing covariates™*

X, = Bx,_; +u+w,;. where w, ~ MVN(0,Q)

y, = ZX; +a+v,, where v, ~ MVN(0,R)
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See Holmes, Ward and Scheuerell (2014) “MARSS User Guide” for
a discussion and example of how to do this.



Topics for the computer lab

* Fitting multivariate state-space models
Fitting multivariate state-space models
with covariates

— Seasonal effects



