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Topics 

Lecture  

 Short example of multivariate observations 

 Examples of multivariate structure in population data 

 How to express these structures mathematically 

 Adding a multivariate observation process 

 

Computer Labs 

 Analysis of population structure using multi-site data  

 Combining diverse data sources to estimate an underlying model 

 

 

 

 



Other examples 

Combine multiple 

station data into a 

single metric 

Multiple individuals 

measured over time 



Imagine we have 3 sampling locations 
for a population 

Location 1 

mark-recapture 

Location 2 

mark-recapture 

Location 3 

line transect 



Mathematically we can write 

observations 
population 

size noise 
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The observation part can be rewritten 

observations Z matrix 
population 

size bias noise 
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We need to fix one of the a’s.  

 Traditionally we fix to the first to 0. 



The model with one a fixed to zero 

observations Z matrix 
population 

size bias noise 
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The observation errors are multivariate. 
For now, let’s assume Normality 
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The variance-covariance matrix tells you how the 

observation errors are related.  Are they independent? Or do 

they covary?  Do have the same variance or difference 

variances? 



Example observation error var-cov 
matrices 
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Example of errors coming from these variance-
covariance matrices 

unconstrained equal var-cov 

diagonal and equal diagonal and unequal 

error 

= how 

much 

the pop. 

growth 

rate is 

above or 

below 

average 

mvrnorm(10,rep(0,3),diag(.1,3)) 



Fitting MARSS models using the MARSS R 
Package 

• Fits MARSS models 

• Model specification is 1-to-1 with the equation 
for the model 

• General, fits any MARSS model with Gaussian 
errors. 

• BUT 

• Maximum likelihood 

• Slow for large data sets.  Students working with large 
data sets have gotten huge speed improvements by 
coding their models in TMB (or ADMB). 



MARSS R Package Model Syntax 

 

X(t) = B X(t-1) + U + w(t), w(t) ~ N(0, Q) 

Y(t) = Z X(t) + A + v(t), v(t) ~ N(0,R) 
 

• fit2=MARSS(y,model=mod.list) 

 

• y is data; model tells MARSS what the parameters are 

• The parameters are MATRICES 

• You write matrices just like they appear in your model on 
paper. Matrices must be MATRICES (not scalars, not vectors) 

• You pass model to MARSS as a list 
 



X(t) = B X(t-1) + U + w(t), w(t) ~ N(0, Q) 

Y(t) = Z X(t) + A + v(t), v(t) ~ N(0,R) 
 

 
Let’s say we want to fit this model: 

Write in matrix form: 

 

 

mod.list=list( 

  U=matrix(“u"), 

  x0=matrix(0), 

  B=matrix(1), 

  Q=matrix(0.1), 

  Z=matrix(1), 

  A=matrix(0), 

  R=matrix("r"), 

  tinitx=0) 

mod.list=list( 

  Q=matrix(0.1) 

) 



X(t) = B X(t-1) + U + w(t), w(t) ~ N(0, Q) 

Y(t) = Z X(t) + A + v(t), v(t) ~ N(0,R) 
 

 

mod.list=list( 

  U=matrix(“u"), 

  x0=matrix(0), 

  B=matrix(1), 

  Q=matrix(0.1), 

  Z=matrix(1,2,1), 

  A= matrix(list(0,"a2"),2,1), 

  R= matrix(list("r",0,0,"r"), 

  tinitx=0) 

Let’s say we want to fit a model where two 

sites are sampling temperature x in a lake: 

Our temperature model: 

Our two temperature sensors: 



Some short examples 

• MARSS_example_1.R 

• MARSS_example_2.R 

• MARSS_example_3.R 

 

 



Multi-site data (Pacific harbor seals) 



An example: modeling the population dynamics of 
harbor seals in Puget Sound, WA 
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Let’s hypothesize (and model) that the 
population has 3 subpopulations 

Three subpopulations that are 
independent but have correlated 
population dynamics (dispersal, 

similar environment, etc.) 
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A multivariate model for the population 
(not the observations but the actual population) 
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3 different x’s, one for 
each subpopulation 

3 mean 
population 
growth rate 

terms 

3 different 
process errors 

 

e ~ MVN(0,Q) 

Multivariate stochastic exponential growth 



The population model in matrix form 

xt = xt-1 + u + wt 

 

wt ~ MVN(0,Q) 

Each parameter has “structure”.  Different structures imply 
different population structure. 

Exponential population growth with drift (tendency to 

increase or decline) 



The mean population growth rates (u) can 
have spatial structure 
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The process error var-cov matrix can have 
structure: wt ~MVN(0,Q) 
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population changes covary 

diagonal 
unique variances and year-to-year population 

changes are uncorrelated 

diagonal 
same variances and year-to-year population 

changes are uncorrelated 
 

JF has unique variance;  
N & S share the same variance 

yr-to-yr changes have equal covariance 



Strait of JF 
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The structure of the U and Q 
specify our hypotheses (or 
assumptions) about how the 
environment is shared. 

JF 

N 

S 

xt  =  xt-1 + u + wt 



We observe our subpopulations and those 
observations have error 

sea lion 



The obs. err. model specifies  how the observed time series are 
related to the true subpopulation sizes 
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Jeffries et al. 2003. TRENDS AND STATUS OF HARBOR SEALS IN WASHINGTON STATE: 

1978–1999. J. Wildl. Manage. 67(1):208-219 
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The observation model 
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The observation errors have a var-cov matrix 
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The harbor seal multivariate state-space model in 
matrix form 
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3x1 vectors 
3x3 matrix 

5x1 vectors 

5x5 matrix 

identity 



Instead of N, S, Str. J subpopulations, we could have other 
combinations and numbers of subpopulations 
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The same model can capture many different underlying 
population structures and observation structures 
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Inferring spatial structure from time‐series data: using multivariate 
state‐space models to detect metapopulation structure of California sea 

lions in the Gulf of California, Mexico 

Journal of Applied Ecology 

Volume 47, Issue 1, pages 47-56, 15 DEC 2009 DOI: 10.1111/j.1365-2664.2009.01745.x 

http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2664.2009.01745.x/full#f1 

Tony Orr (NOAA, AFSC) 

Hypotheses about the population structure: 

Diet, Disease, DNA, Distance  

(2 null models: no structure and fully structured)  

http://onlinelibrary.wiley.com/doi/10.1111/jpe.2010.47.issue-1/issuetoc
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2664.2009.01745.x/full#f1
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2664.2009.01745.x/full#f1
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2664.2009.01745.x/full#f1
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2664.2009.01745.x/full#f1




The MARSS manual has two chapters using 
MARSS models to analyze spatial count data 

harbor seal count data from the west coast of the USA 

 



Chapter 7 in HWS 2014  

Chapter 7: Combining multi-site data to 
estimate regional population trends 



Chapter 8 in HWS 2014 

Identifying spatial 
structure and covariance 
in harbor seals on the 
west coast of the USA 

2000km 



Shortcut for the Z matrix 

Z matrix 
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