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Review: ARMA models

* A time series is autoregressive moving average,
or ARMA(p,q), if it is stationary and

X, =0Qx_+-+¢,x_ +w +0w,_ +---+0 w

t—q
* AR processes in biology generally arise from
lagged impacts, e.g. the effect of population size

on population growth rates

 MA processes describe how random ‘shocks’ or
differences between predictions and
observations propagate through time — including
unknown external drivers, species interactions,
etc




Biological time series are relatively short

 We should only be using lower-order ARMA
models with < 40 data points (lves et al. 2010)

e Examples:
* ARMA(1,1): tree rings, Woollon & Norton 2003

e ARMA (1,1): Vucetich et al. 1997 Cons Bio (moose in
ISRO)

* ARMA(2,2): fire dynamics, Beckage & Platt 2003
 ARMA(2,1): Norwegian cod, Stinseth et al. 1999




Visualizing AR & MA processes

Can you spot which of these is AR vs MA?
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What’s the order of the AR() and MA() processes?



Remember Mark’s lecture: use ACF &
PACF for model ID

AR(p) Tails off
MA(q) Tails off

ARMA(p,q) Tails off (after lag [g-p]) Tails off (after lag [p-q])



This is an AR(1) and MA(1) model
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Maximum Likelihood

* A priori, we specify that the data (or some
process) has been generated from a
distribution (e.g. Normal)

* The likelihood of data x,, x,, x5, can then be
calculated

LOIx,x,,x,)=LO|x)xLOIx,)xLO]x,)
0=(u, 0)

* R provides built in functions for doing this:
dnorm(), dpois(), dbinom(), dgamma(), etc.



Interpretation of maximum likelihood

* When we write the likelihood, the parameters
are conditioned on the data.

 “What’s the likelihood of the parameters
given the data?”

 Parameters are fixed quantities, data are
random

LOIx,x,,x,)=LO1x)xLOIx,)xLOIx,)
0=(u, 0)



Goal: find parameters that
maximize likelihood
e Parameters that maximize the likelihood will

also maximize the log-likelihood

* Equivalently, we can minimize the negative
log-likelihood

 Example: generate random walk with drift

— Stochastic model aka “process error model”

set.seed(1l)
rnorm(100,0,1) # white noise ~ Normal(0,1)

® # 1nitial value
(1 2:100) {x[1] = x[1-1] + 0.1 + e[1]}

()
i



The Data
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Steps to find MLE

* Write a function that takes in parameters, and
returns NLL (= Negative log likelihood)

rwdrift = function(pars) {
# pars[1] = drift, pars[2] = error
drift = pars[1]
sigma = exp(pars[2]) # trick to keep positive
predx= 0
for(i in 2:100) {
predx[1] = x[1-1] + drift
hy

logLike = sum(dnorm(x[2:100], predx[2:100], sd = sigma,
log=TRUE))

return(-logLike) # return NLL because optim minimizes

}



Use your favorite minimizer/
maximizer

> optim(Crunif(2), rwdrift)
$par
[1] |e.2163119|-0.1108552

* Even for 100 data points,
$value

r1] 129.5063 estimates of drift and error
$counts variance aren’t perfect

function gradient
59 NA

$convergence
[1] ©

optim() tells us that the algorithm

$message has converged at the MLE
NULL




Other functions in R

* Many existing functions we’re using — Im(),
arima(), Arima(), MARSS(), are also using
maximum likelihood

* rwf() in ‘forecast’ does the exact same thing as
our function ‘rwdrift’ > e drtreTRIE)

Forecast method: Random walk with drift
Model Information:

drift
[1] ©0.2163151

$drift.se
[1] 0.09042107

$sd
[1] ©.8996783

$call
rwf(x = x, drift = TRUE)



* A second type of model we could fit would be
fitting a regression line through the data?

X =0,+0,u, +2; z, ~ Normal(0,0)

I
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Coefficients:

> summary(1lm(x~seq(1,100)))

Call:
Ilm(formula = x ~ seq(l, 100))
Residuals:

Min 1Q Median 3Q Max

-2.5603 -1.0185 -0.2884 1.0472 3.1156

Estimate Std. Error t value Pr(Glt

(Intercept) 7 0.291620 1.218 0.2
seq(l, 100) 0.219724

0.005013 43.827 <Ze-

Tiny bit different from the trend estimate
we got from rwf() —

1. Is this difference meaningful?

2. Any insight as to why they’re different?
3. What does this imply for predictions?



* Regression is fitting a deterministic process
through the data (all residual error =
“observation error”)

 Random walks are fitting a stochastic process
(no observation error, all process variability)

* In the lab, we’ll also introduce univariate
‘state-space’ models, which estimate both
process and observation error variances



Bayesian Estimation

e Subtle but important differences between
maximum likelihood / Bayesian approaches

e Bayesians also use likelihood, but view the
data as fixed and the parameters as random

L(x10) vs L(Olx)

/ N\

Bayesian Maximum likelihood



Bayes Theorem

e Based on laws of conditional probability

P(BIA)P(A)
P(B)

P(AIB)=

e Using our previous notation & likelihood,

P(x10)P(0)
P(x)

POlx)=

* P(x) is a constant, and usually not written, so

P(O@1x)=P(x10)P(0)



Bayes Theorem

 What are the components of this equation?
P(61x)=P(x10)P(H)

P(x10) is the likelihood
P@®) is the prior probability distribution

P01x) is the posterior probability distribution



Why use a prior

* Prior necessary to express the posterior as a
probability distribution

* |t's also expression of a priori belief

* Posterior is thus a probability distribution

— Difference between posterior and prior is a
measure of how much you ‘learn’ by seeing data

— Can also be thought of as weighted average of
data + beliefs
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Differences in estimation

* Bayesian methods require evaluating the
likelihood by integrating over the parameter
space (instead of maximizing)

* Fish 507: there are a handful of ways to do
numerical integration. For this class, we’ll only
use Markov Chain Monte Carlo (MCMC)

— Sample sequentially 1000s of samples of
parameter space



2D posterior surface:
think about animal foraging on landscape

. MLE is finding the MLE
absolute best point.

« Bayesian methods o d bostor .
attempt to find the best =" / osterior mode
point on average. W




Overview of MCMC

* Simulate random walks over the parameter
space, with a tendency to spend more time in
areas of high likelihood

e Each random walk = MCMC chain.

— Each initialized from unique starting point

— Each samples independently for 1000s of
iterations

 We’'ll discard the first XX samples, as a “burn-in period”



MCMC convergence

e Assessing convergence is more difficult than
maximum likelihood

 WEe'll run through a couple diagnostics, but
this is not comprehensize (Andre’s 507 dives
into this more)



We need chains to be stationary
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We want each sample to be
approximately independent

|H .

* |f lag(1) acf is too high, increase the ‘thinning
rate’ of the MCMC chain



Quantitative tests of convergence

* Gelman-Rubin diagnostic

— Used to check convergence of multiple chains in
parallel. Goal: R_hatin (1.0, 1.05)

* Geweke diagnostic

— Is mean of first 10% of MCMC chain the same as
the last 50%°?

* Heidelberger-Welch diagnhostic

— |s the entire chain stationary? If not, is the last
90%7? 80%? 70%? Etc.
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Forecasting

We’ll use the word forecasting to refer to out of
sample prediction

Consider the following 2 basic models
— Linear regression
— Random walk

What can you say about their predictions — or where
their errors are coming from?

Linear regression errors = observation, random walk
errors = process



predict() function

* After fitting a regression model, we can use

predict() or predict.Im()

 Example

\o/°/ \

O\O

\

O\o




> # create a hypothetical dataset
> set.seed(10)

> X = seq(1,10)

> y = cumsum(rnorm(10@, @, 1))

>

>

>

>

# do basic linear regression
mod = Ilm(y ~ x)

summary(mod)
Call:
Im(formula = y ~ x)
Residuals:
Min 1Q Median 3Q Max

-0.66743 -0.52735 ©0.04611 0.32685 1.03915

Coefficients:
Estimate Std. Error Jt value Pr(G1tl)

(Intercept) | 0.57589 0.40756 ) 1.413 Q10
X -0.51112 0.06568 | -7.78115.33e-05 ***

Signif. codes: @ “***’ 0.001 ‘**’ 0.01 ‘*’ .05 ‘.’ 0.1 ¢ ’ 1

Residual standard error:[0.5966 Jon 8 degrees of freedom
Multiple R-squared: ©0.8833, Adjusted R-squared:|0.8687
F-statistic: 60.55 on 1 and 8 DF, p-value: 5.3Z28e-0



* |f we apply predict() with default arguments,
our prediction se is smaller than the residual
error!

> predict(mod, newdata=list(x=11), se.fit=T)
$fit

1
-5.046396

$se.fit
[1] 0.4075607

$df
[1] 8

$residual.scale
[1] ©.5966078



Confidence v Prediction Intervals

e Confidence intervals on

the mean (in-sample)

predict(mod,
newdata=1l1st(x=11),
se.fit=T,
interval="confidence")

Confidence intervals on
the mean (in-sample)

* Interval =(-5.99, -4.10)

 Prediction intervals

should be used for new
observations (in or out
of sample)

predict(mod,
newdata=11st(x=11),
se.fit=T,
interval="prediction”)

* Interval =(-6.71, -3.38)



Using gam() as forecasting model

e gam()isin “mgcv”’

* More flexible than OLS regression
— Non-linear
— Non normal errors

 Complexity can be captured via fitting a series
of polynomial splines
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Predictions from GAMs

predict(gam.mod,newdata=list(time=2006),type

="terms",se= )

e type = “terms” only includes uncertainty in
spline terms

e type = “iterms” or “response” will make se.fit
larger because it includes uncertainty in
Intercept



Forecasting with arima()

e Let’s fit an ARMA(1,1) model to the global
temperature data, after 1st differencing to
remove trend

* You can use the arima() function or Arima()
function — Arima() is a wrapper for arimal)

# for simplicity, we won’t include a separate ARMA model for seasonality

ar.global.l = Arima(Global, order =
c(1,1,1),seasonal=11st(order=c(0,0,0),period=12))

fl = forecast(ar.global.l, h = 10)



Model Information:
Series: Global
ARIMA(1,1,1)

What does f1 contain?

Coefficients:
arl mal
0.3797 -0.8700
s.e. ©0.0433 0.0293

sigmaAZ2 estimated as 0.01644: 1log likelihood=1142.13

AIC=-2278.206 AICc=-2278.25 BI(C=-2261.77
In-sample error measures:
ME RMSE MAE MPE MAPE

2.270029%e-03 1.281826e-01 9.390127e-02 1.313987e+01 1.076644e+02

Forecasts:

Point F
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810

> |

OO0

orecast

.3988276
.4344510
.4479760
.4531111
.45500607
.4558009
.4560819
.4561886
.4562291
.4562445

OO0

Lo 80

.2345093
.2500229
.2560411
.2567326
.2552030
.2528226
.2501388
.2473628
. 2445748
.2418046

OO0

Hi 80

.5631459
.6188790
.6399109
.6494896
.6549184
.6587791
.6620251
.6650145
.6678835
.6706844

OO0 e

Lo 95

.1475244
.1523926
.1544369
.1527761
.1494047
.1453725
.1411191
.1368171
.1325318
.1282870

OO0 e

Hi 95

.6501308
. 7165093
. 7415151
. 7534460
. 7607167
. 7662293
.7710448
. 7755602
. 7799265
. 7842021



plot fitted arima() object

Forecasts from ARIMA(1,1,1)
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Summary

* As expected, uncertainty increases as a
function of forecast length

 We could also perform forecasts by

bootstrapping new values of arima()
parameters

* Bayesian forecasts are very similar

— Forecasts can be made based on the mode, HPD
region, or for all MCMC samples



With lab

* Practice using arima.sim () to simulate time
series of different AR and MA orders



