Estimation and forecasting for time series models

Eric Ward

FISH 507 – Applied Time Series Analysis

12 January 2017

Topics Week 2

- Summarizing ARIMA models
- Maximum Likelihood and Bayesian Estimation
- Prediction & forecasting
- Evaluating forecasts

Review: ARMA models

 A time series is *autoregressive moving average*, or ARMA(*p*,*q*), if it is stationary and

 $x_t = \phi_1 x_{t-1} + \dots + \phi_p x_{t-p} + w_t + \theta_1 w_{t-1} + \dots + \theta_q w_{t-q}$

- <u>AR processes</u> in biology generally arise from lagged impacts, e.g. the effect of population size on population growth rates
- <u>MA processes</u> describe how random 'shocks' or differences between predictions and observations propagate through time – including unknown external drivers, species interactions, etc

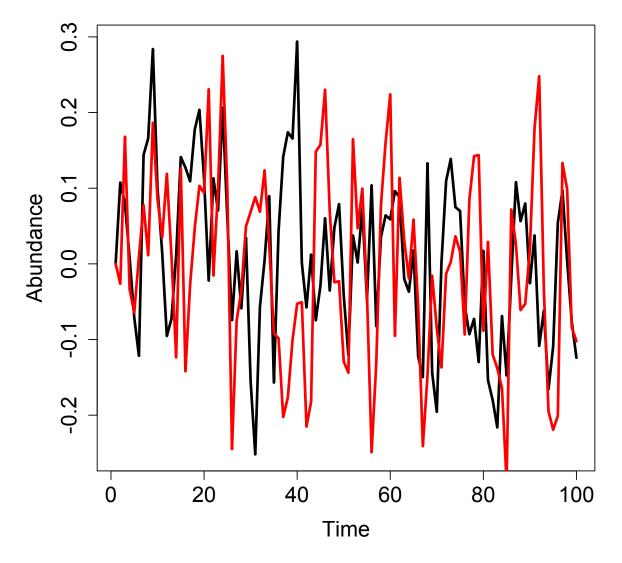
Biological time series are relatively short

 We should only be using lower-order ARMA models with < 40 data points (Ives et al. 2010)

- Examples:
- ARMA(1,1): tree rings, Woollon & Norton 2003
- ARMA (1,1): Vucetich et al. 1997 Cons Bio (moose in ISRO)
- ARMA(2,2): fire dynamics, Beckage & Platt 2003
- ARMA(2,1): Norwegian cod, Stinseth et al. 1999

Visualizing AR & MA processes

Can you spot which of these is AR vs MA?

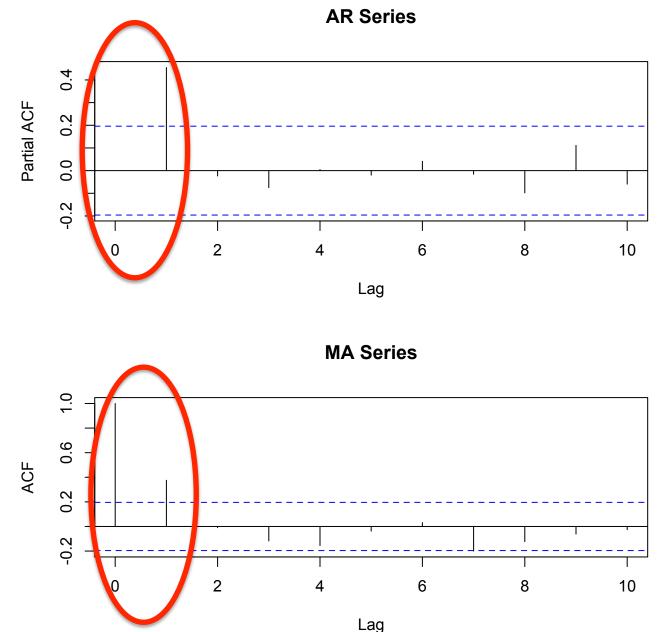


What's the order of the AR() and MA() processes?

Remember Mark's lecture: use ACF & PACF for model ID

	ACF	PACF	
AR(p)	Tails off	Cuts off after lag-p	
MA(q)	Cuts off after lag-q	Tails off	
ARMA(<i>p,q</i>)	Tails off (after lag [q-p])	Tails off (after lag [<i>p-q</i>])	

This is an AR(1) and MA(1) model



Topics Week 2

- Summarizing ARIMA models
- Maximum Likelihood and Bayesian Estimation
- Prediction & forecasting
- Evaluating forecasts

Maximum Likelihood

- A priori, we specify that the data (or some process) has been generated from a distribution (e.g. Normal)
- The likelihood of data x₁, x₂, x₃, can then be calculated

$$L(\theta \mid x_1, x_2, x_3) = L(\theta \mid x_1) \times L(\theta \mid x_2) \times L(\theta \mid x_3)$$

$$\theta = (u, \sigma)$$

 R provides built in functions for doing this: dnorm(), dpois(), dbinom(), dgamma(), etc.

Interpretation of maximum likelihood

- When we write the likelihood, the parameters are conditioned on the data.
- "What's the likelihood of the parameters given the data?"
- Parameters are fixed quantities, data are random

$$L(\theta \mid x_1, x_2, x_3) = L(\theta \mid x_1) \times L(\theta \mid x_2) \times L(\theta \mid x_3)$$

$$\theta = (u, \sigma)$$

Goal: find parameters that maximize likelihood

- Parameters that maximize the likelihood will also maximize the log-likelihood
- Equivalently, we can minimize the negative log-likelihood
- Example: generate random walk with drift
 - Stochastic model aka "process error model"

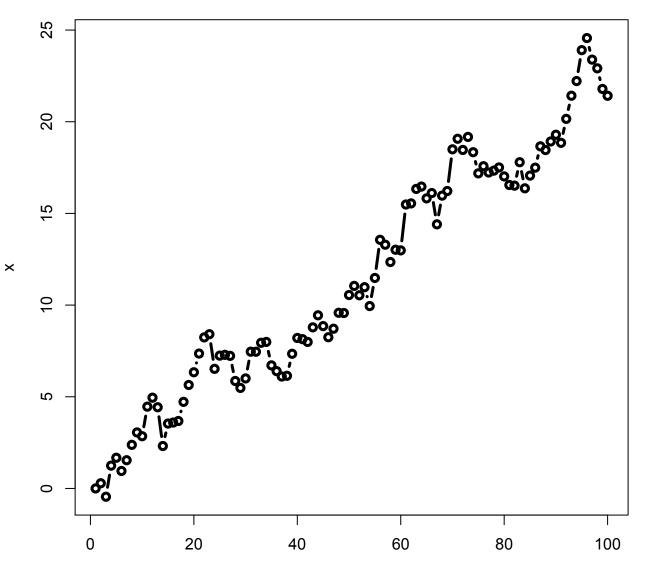
set.seed(1)

e = rnorm(100,0,1) # white noise ~ Normal(0,1)

x = 0 # initial value

for(i in 2:100) {x[i] = x[i-1] + 0.1 + e[i]}

The Data



Index

Steps to find MLE

 Write a function that takes in parameters, and returns NLL (= Negative log likelihood)

```
rwdrift = function(pars) {
       # pars[1] = drift, pars[2] = error
       drift = pars[1]
       sigma = exp(pars[2]) # trick to keep positive
       predx = 0
       for(i in 2:100) {
               predx[i] = x[i-1] + drift
       }
       logLike = sum(dnorm(x[2:100], predx[2:100], sd = sigma,
log=TRUE))
       return(-logLike) # return NLL because optim minimizes
}
```

Use your favorite minimizer/ maximizer

> optim(runif(2), rwdrift)

\$par [1] 0.2163119 -0.1108552

\$value [1] 129.5063

\$counts function gradient 59 NA

\$convergence
[1] 0

\$message NULL • Even for 100 data points, estimates of drift and error variance aren't perfect

optim() tells us that the algorithm has converged at the MLE

Other functions in R

- Many existing functions we're using lm(), arima(), Arima(), MARSS(), are also using maximum likelihood
- rwf() in 'forecast' does the exact same thing as our function 'rwdrift' > summary(rwf(x,drift=TRUE))

Forecast method: Random walk with drift

Model Information: \$drift [1] 0.2163151

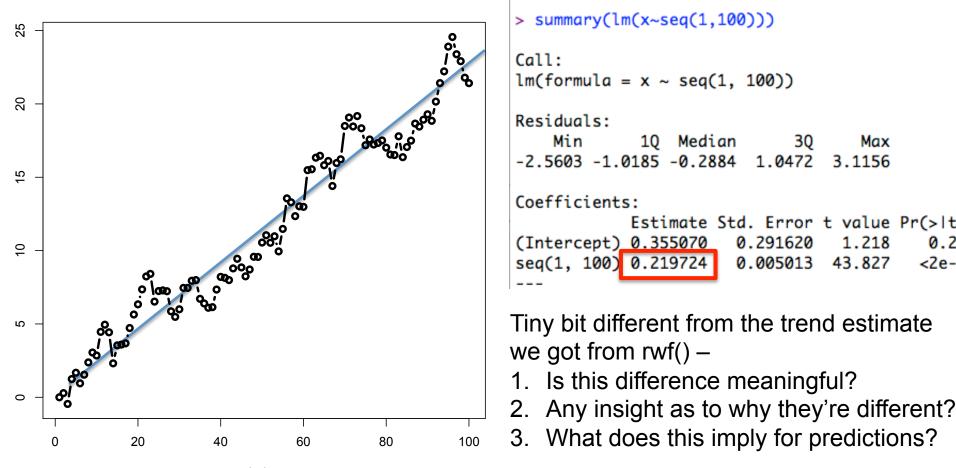
\$drift.se [1] 0.09042107

\$sd [1] 0.8996783

\$call
rwf(x = x, drift = TRUE)

 A second type of model we could fit would be fitting a regression line through the data?

 $x_t = \alpha_0 + \alpha_1 u_t + z_t; \ z_t \sim Normal(0,\sigma)$



Index

- Regression is fitting a deterministic process through the data (all residual error = "observation error")
- Random walks are fitting a stochastic process (no observation error, all process variability)
- In the lab, we'll also introduce univariate 'state-space' models, which estimate both process and observation error variances

Bayesian Estimation

 Subtle but important differences between maximum likelihood / Bayesian approaches

 Bayesians also use likelihood, but view the data as fixed and the parameters as random

$$\begin{array}{cccc} L(x \mid \theta) & vs & L(\theta \mid x) \\ \end{array}$$
Bayesian Maximum likelihood

Bayes Theorem

Based on laws of conditional probability

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

• Using our previous notation & likelihood,

$$P(\theta \mid x) = \frac{P(x \mid \theta)P(\theta)}{P(x)}$$

• P(x) is a constant, and usually not written, so

 $P(\theta \mid x) = P(x \mid \theta)P(\theta)$

Bayes Theorem

• What are the components of this equation?

 $P(\theta \mid x) = P(x \mid \theta)P(\theta)$

$P(x \mid \theta)$ is the likelihood

 $P(\theta)$ is the prior probability distribution

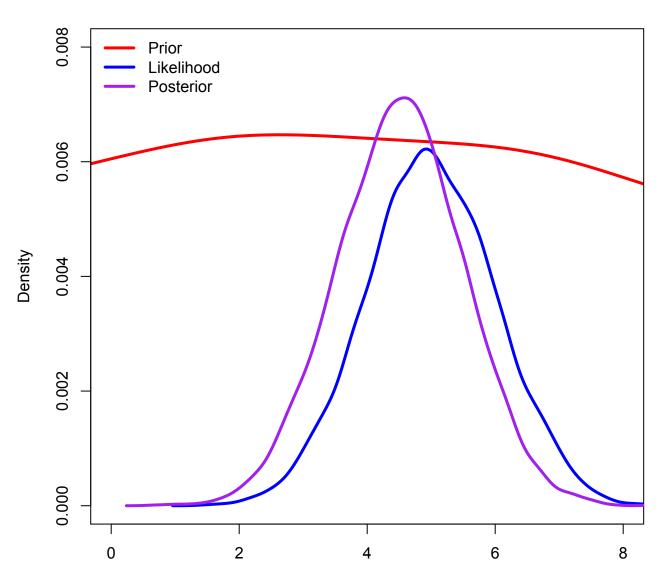
 $P(\theta \mid x)$ is the posterior probability distribution

Why use a prior

- Prior necessary to express the posterior as a probability distribution
- It's also expression of a priori belief

- Posterior is thus a probability distribution
 - Difference between posterior and prior is a measure of how much you 'learn' by seeing data
 - Can also be thought of as weighted average of data + beliefs

Example



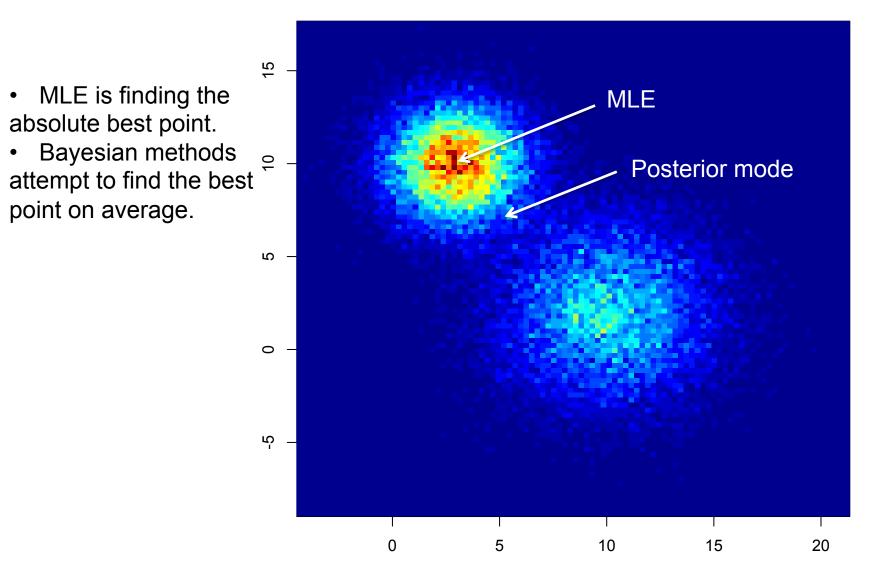
Theta

Differences in estimation

 Bayesian methods require evaluating the likelihood by integrating over the parameter space (instead of maximizing)

- Fish 507: there are a handful of ways to do numerical integration. For this class, we'll only use Markov Chain Monte Carlo (MCMC)
 - Sample sequentially 1000s of samples of parameter space

2D posterior surface: think about animal foraging on landscape



Overview of MCMC

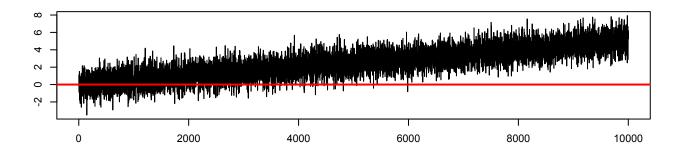
- Simulate random walks over the parameter space, with a tendency to spend more time in areas of high likelihood
- Each random walk = MCMC chain.
 - Each initialized from unique starting point
 - Each samples independently for 1000s of iterations
 - We'll discard the first XX samples, as a "burn-in period"

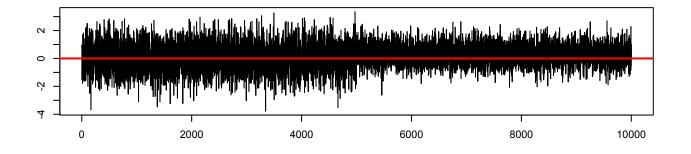
MCMC convergence

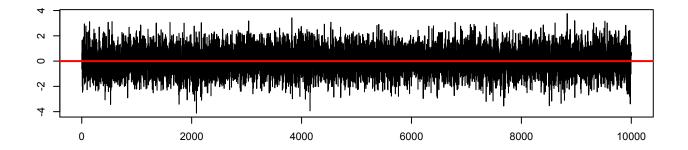
 Assessing convergence is more difficult than maximum likelihood

• We'll run through a couple diagnostics, but this is not comprehensize (Andre's 507 dives into this more)

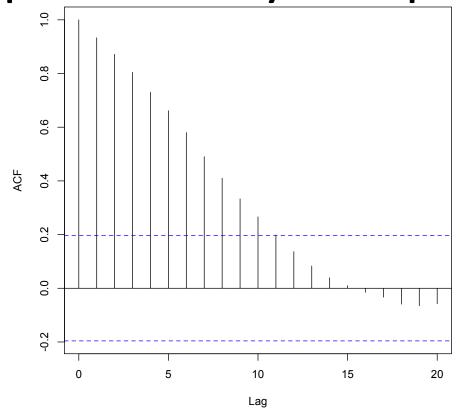
We need chains to be stationary







We want each sample to be approximately independent



 If lag(1) acf is too high, increase the 'thinning rate' of the MCMC chain

Quantitative tests of convergence

- Gelman-Rubin diagnostic
 - Used to check convergence of multiple chains in parallel. Goal: R_hat in (1.0, 1.05)
- Geweke diagnostic
 - Is mean of first 10% of MCMC chain the same as the last 50%?
- Heidelberger-Welch diagnostic
 - Is the entire chain stationary? If not, is the last
 90%? 80%? 70%? Etc.

Topics Week 2

- Summarizing ARIMA models
- Maximum Likelihood and Bayesian Estimation
- Prediction & forecasting
- Evaluating forecasts

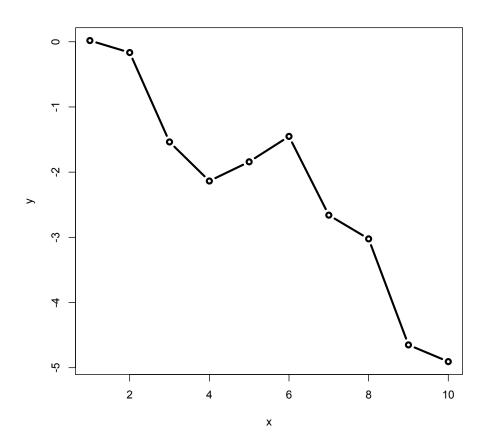
Forecasting

- We'll use the word forecasting to refer to out of sample prediction
- Consider the following 2 basic models
 - Linear regression
 - Random walk
- What can you say about their predictions or where their errors are coming from?
- Linear regression errors = observation, random walk
 errors = process

predict() function

 After fitting a regression model, we can use predict() or predict.lm()

• Example



```
> # create a hypothetical dataset
> set.seed(10)
> x = seq(1, 10)
> y = cumsum(rnorm(10, 0, 1))
>
> # do basic linear regression
> mod = lm(y \sim x)
> summary(mod)
Call:
lm(formula = y \sim x)
Residuals:
     Min
           10 Median
                                30
                                        Max
-0.66743 -0.52735 0.04611 0.32685 1.03915
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.57589 0.40756 1.413 0.195
            -0.51112 0.06568 -7.781 5.33e-05 ***
х
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.5966 on 8 degrees of freedom
Multiple R-squared: 0.8833, Adjusted R-squared: 0.8687
F-statistic: 60.55 on 1 and 8 DF, p-value: 5.328e-05
```

 If we apply predict() with default arguments, our prediction se is smaller than the residual error!

Confidence v Prediction Intervals

- Confidence intervals on the mean (in-sample)
- predict(mod, newdata=list(x=11), se.fit=T, interval="confidence")
- Confidence intervals on the mean (in-sample)
- Interval = (-5.99, -4.10)

- Prediction intervals should be used for new observations (in or out of sample)
- predict(mod, newdata=list(x=11), se.fit=T, interval="prediction")

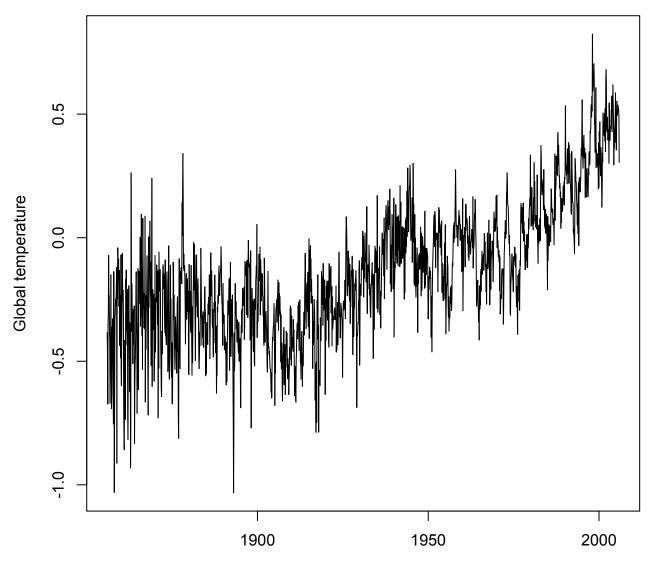
• Interval = (-6.71, -3.38)

Using gam() as forecasting model

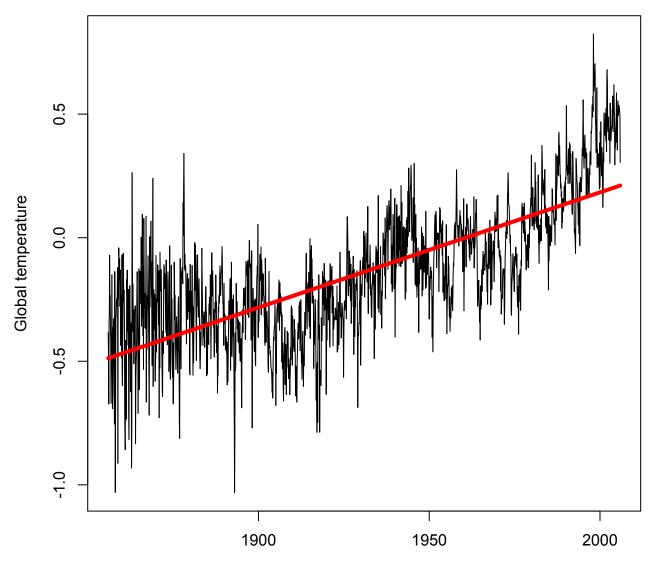
• gam() is in "mgcv"

- More flexible than OLS regression
 - Non-linear
 - Non normal errors

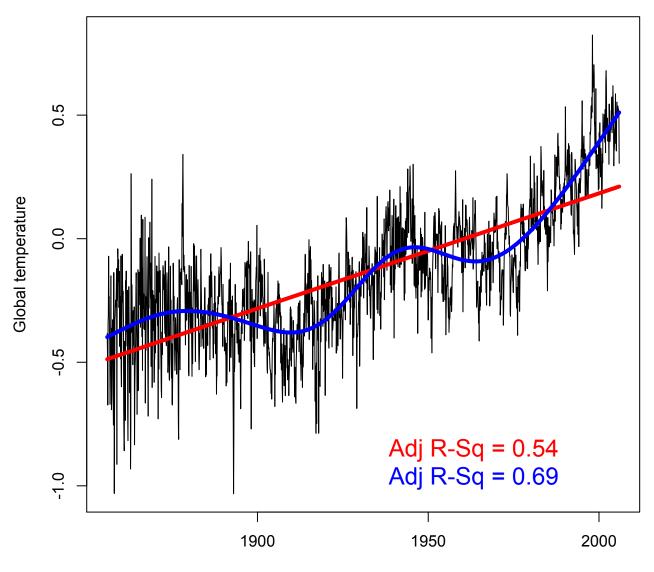
 Complexity can be captured via fitting a series of polynomial splines



Time



Time



Time

Predictions from GAMs

predict(gam.mod,newdata=list(time=2006),type
="terms",se=TRUE)

- type = "terms" only includes uncertainty in spline terms
- type = "iterms" or "response" will make se.fit larger because it includes uncertainty in intercept

Forecasting with arima()

- Let's fit an ARMA(1,1) model to the global temperature data, after 1st differencing to remove trend
- You can use the arima() function or Arima() function – Arima() is a wrapper for arima()

for simplicity, we won't include a separate ARMA model for seasonality
ar.global.1 = Arima(Global, order =
c(1,1,1), seasonal=list(order=c(0,0,0), period=12))

f1 = forecast(ar.global.1, h = 10)

Model Information: Series: Global ARIMA(1,1,1)

What does f1 contain?

Coefficients:

	ar1	ma1
	0.3797	-0.8700
s.e.	0.0433	0.0293

sigma^2 estimated as 0.01644: log likelihood=1142.13 AIC=-2278.26 AICc=-2278.25 BIC=-2261.77

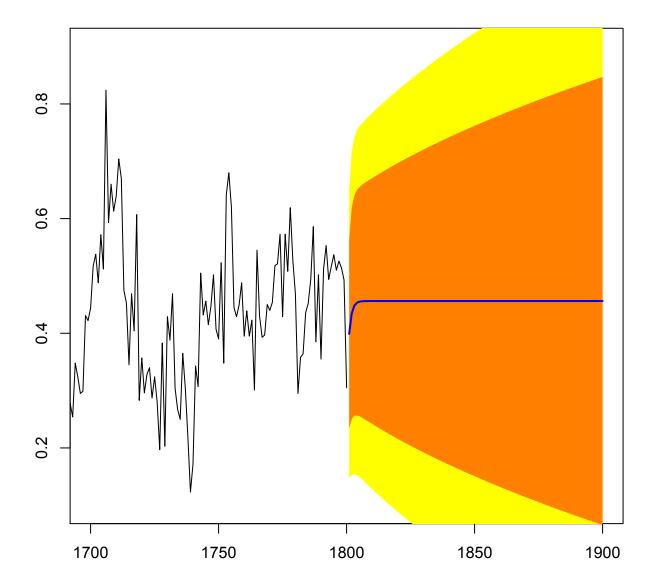
In-sample error measures: ME RMSE MAE MPE MAPE 2.270029e-03 1.281826e-01 9.390127e-02 1.313987e+01 1.076644e+02

Forecasts:

Point Forecast	Lo 80	Hi 80	Lo 95	Hi 95
0.3988276	0.2345093	0.5631459	0.1475244	0.6501308
0.4344510	0.2500229	0.6188790	0.1523926	0.7165093
0.4479760	0.2560411	0.6399109	0.1544369	0.7415151
0.4531111	0.2567326	0.6494896	0.1527761	0.7534460
0.4550607	0.2552030	0.6549184	0.1494047	0.7607167
0.4558009	0.2528226	0.6587791	0.1453725	0.7662293
0.4560819	0.2501388	0.6620251	0.1411191	0.7710448
0.4561886	0.2473628	0.6650145	0.1368171	0.7755602
0.4562291	0.2445748	0.6678835	0.1325318	0.7799265
0.4562445	0.2418046	0.6706844	0.1282870	0.7842021
	0.3988276 0.4344510 0.4479760 0.4531111 0.4550607 0.4558009 0.4560819 0.4561886 0.4562291	0.3988276 0.2345093 0.4344510 0.2500229 0.4479760 0.2560411 0.4531111 0.2567326 0.4550607 0.2552030 0.4558009 0.2528226 0.4560819 0.2501388 0.4561886 0.2473628 0.4562291 0.2445748	0.3988276 0.2345093 0.5631459 0.4344510 0.2500229 0.6188790 0.4479760 0.2560411 0.6399109 0.4531111 0.2567326 0.6494896 0.4550607 0.2552030 0.6549184 0.4558009 0.2528226 0.6587791 0.4560819 0.2501388 0.6620251 0.4561886 0.2473628 0.6650145 0.4562291 0.2445748 0.6678835	Point Forecast Lo 80 Hi 80 Lo 95 0.3988276 0.2345093 0.5631459 0.1475244 0.4344510 0.2500229 0.6188790 0.1523926 0.4479760 0.2560411 0.6399109 0.1544369 0.4531111 0.2567326 0.6494896 0.1527761 0.4550607 0.2552030 0.6549184 0.1494047 0.4558009 0.2528226 0.6587791 0.1453725 0.4560819 0.2501388 0.6620251 0.1411191 0.4561886 0.2473628 0.6650145 0.1368171 0.4562291 0.2445748 0.6678835 0.1325318 0.4562445 0.2418046 0.6706844 0.1282870

plot fitted arima() object

Forecasts from ARIMA(1,1,1)



Summary

- As expected, uncertainty increases as a function of forecast length
- We could also perform forecasts by bootstrapping new values of arima() parameters

- Bayesian forecasts are very similar
 - Forecasts can be made based on the mode, HPD region, or for all MCMC samples

With lab

• Practice using arima.sim () to simulate time series of different AR and MA orders