Introduction to stochastic processes

Mark Scheuerell

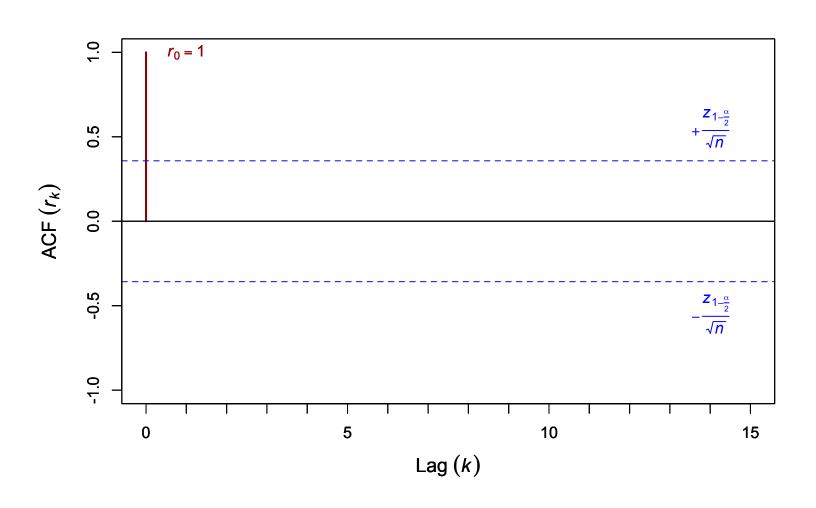
FISH 507 – Applied Time Series Analysis

10 January 2017

Topics for today

- Quick review of
 - Correlograms
 - White noise
 - Random walks
- Linear stationary models
- Autoregressive (AR)
- Moving average (MA)
- Autoregressive moving average (ARMA)
- Using ACF & PACF for model ID

The correlogram



White noise (WN)

A time series $\{w_t : t = 1,2,3,...,n\}$ is discrete white noise if the variables $w_1, w_2, w_3, ..., w_n$ are

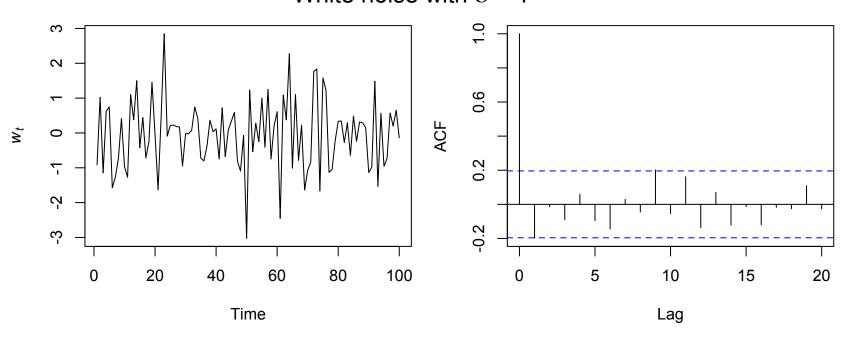
- 1) independent, and
- 2) identically distributed with a mean of zero

Gaussian WN has the following 2nd-order properties:

$$\mu_{w} = 0 \qquad \gamma_{k} = \begin{cases} \sigma^{2} & \text{if } k = 0 \\ 0 & \text{if } k \neq 0 \end{cases} \qquad \rho_{k} = \begin{cases} 1 & \text{if } k = 0 \\ 0 & \text{if } k \neq 0 \end{cases}$$

White noise

White noise with σ = 1



Random walk (RW)

A time series $\{x_t : t = 1,2,3,...,n\}$ is a random walk if

- 1) $x_t = x_{t-1} + w_t$, and
- 2) w_t is white noise

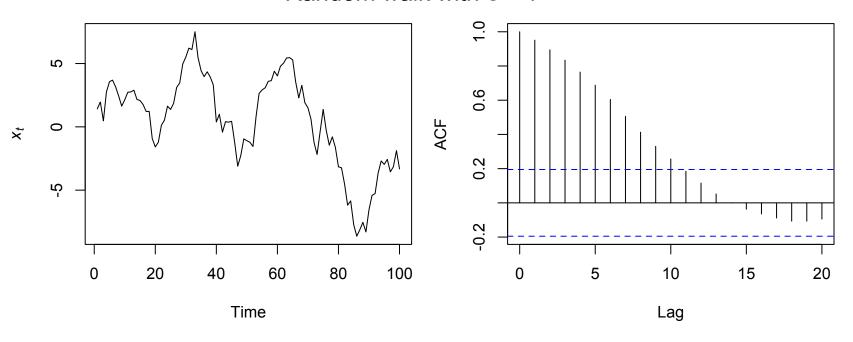
RW has the following 2nd-order properties:

$$\mu_w = 0$$
 $\gamma_k(t) = t\sigma^2$ $\rho_k(t) = \frac{t\sigma^2}{\sqrt{t\sigma^2(t+k)\sigma^2}} = \frac{1}{\sqrt{1+\frac{k}{t}}}$

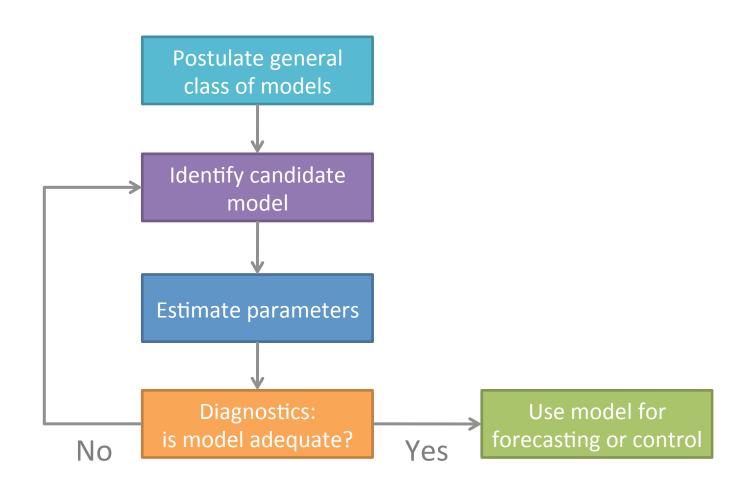
Random walks are NOT stationary!

Random walk (RW)

Random walk with $\sigma = 1$



Iterative approach to model building



Linear stationary models

- We saw last week that linear filters are a useful way of modeling time series
- Here we extend those ideas to a general class of models call autoregressive moving average (ARMA)

Autoregressive (AR) models

 An autoregressive model of order p, or AR(p), is defined as

$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \dots + \phi_p X_{t-p} + W_t$$

where we assume

- 1) w_t is WN, and
- 2) $\phi_p \neq 0$ for order-*p* process
- *Note*: RW model is special case of AR(1) with $\phi_1 = 1$

Stationary & nonstationary AR models

 We can write out an AR(p) model using the backward shift notation, such that

$$\phi_p(\mathbf{B})x_t = (1 - \phi_1 \mathbf{B} - \phi_2 \mathbf{B}^2 - \dots - \phi_p \mathbf{B}^p)x_t = w_t$$

• If we treat **B** as a number, we can out write the characteristic equation as

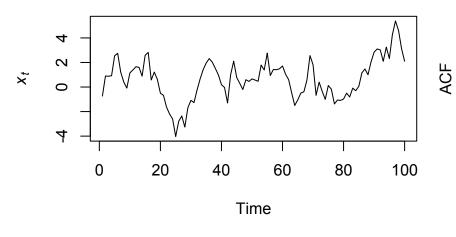
$$\phi_p\left(\mathbf{B}\right) = 0$$

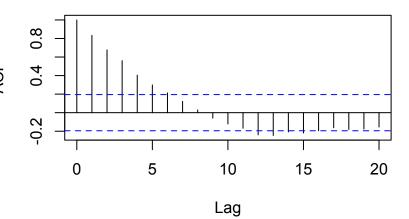
• In order to be stationary, all roots of char eqn must exceed 1 in absolute value

Stationary & nonstationary AR models

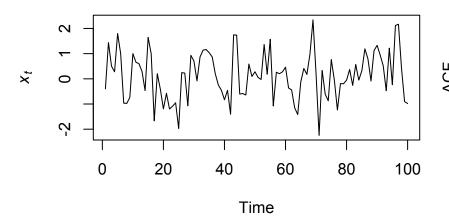
- For example, a RW model is not stationary because $\phi = 1 \mathbf{B}$, and hence, $\mathbf{B} = 1$
- However, the AR(1) model $x_t = 0.5x_{t-1} + w_t$ is because $\phi = 1 0.5$ **B**, and hence, **B** = 2 > 1

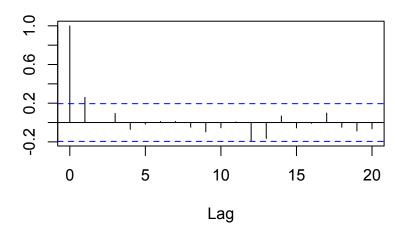
Examples of AR(1) processes





AR(1) with $\phi = 0.3$





Partial autocorrelation function

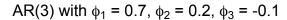
- The partial *autocorrelation function* (PACF) measures the linear correlation of a series x_t and x_{t+k} with the linear dependence of $\{x_{t-1}, x_{t-2}, ..., x_{t-(k-1)}\}$ removed
- It is defined as

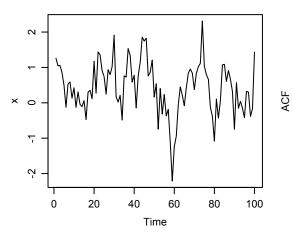
$$\phi_{kk} = \begin{cases} \operatorname{Cor}(x_1, x_0) = \rho(1) & \text{if } k = 1 \\ \operatorname{Cor}(x_k - x_k^{k-1}, x_0 - x_0^{k-1}) & \text{if } k \ge 2 \end{cases}$$

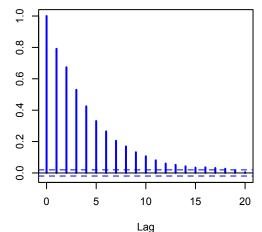
$$x_k^{k-1} = \beta_1 x_{k-1} + \beta_2 x_{k-2} + \dots + \beta_{k-1} x_1$$

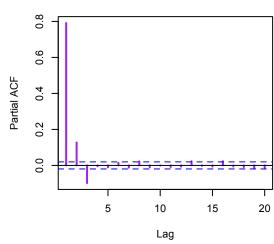
$$x_0^{k-1} = \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_{k-1} x_{k-1}$$

ACF & PACF for AR(3) processes

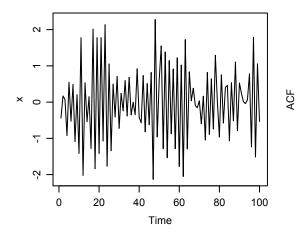


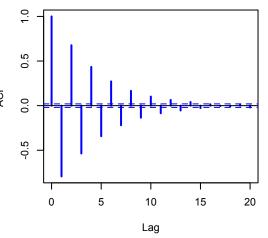


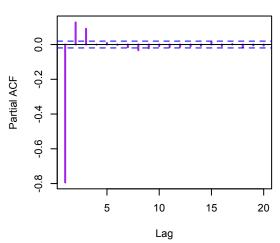




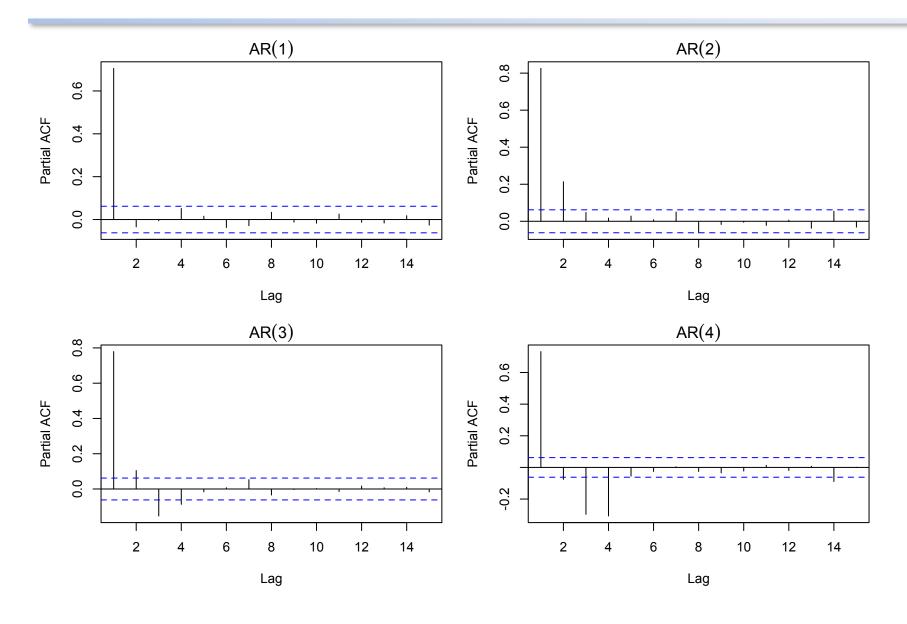
AR(3) with ϕ_1 = -0.7, ϕ_2 = 0.2, ϕ_3 = -0.1







PACF for AR(p) processes



Using ACF & PACF for model ID

	ACF	PACF
AR(<i>p</i>)	Tails off slowly	Cuts off after lag-p

Moving average (MA) models

 A moving average model of order q, or MA(q), is defined as

$$X_{t} = W_{t} + \theta_{1}W_{t-1} + \dots + \theta_{q}W_{t-q}$$

where w_t is WN (with 0 mean)

- It is simply the current error term plus a weighted sum of the q most recent error terms
- Because MA processes are finite sums of stationary WN processes, they are themselves stationary

Invertible MA models

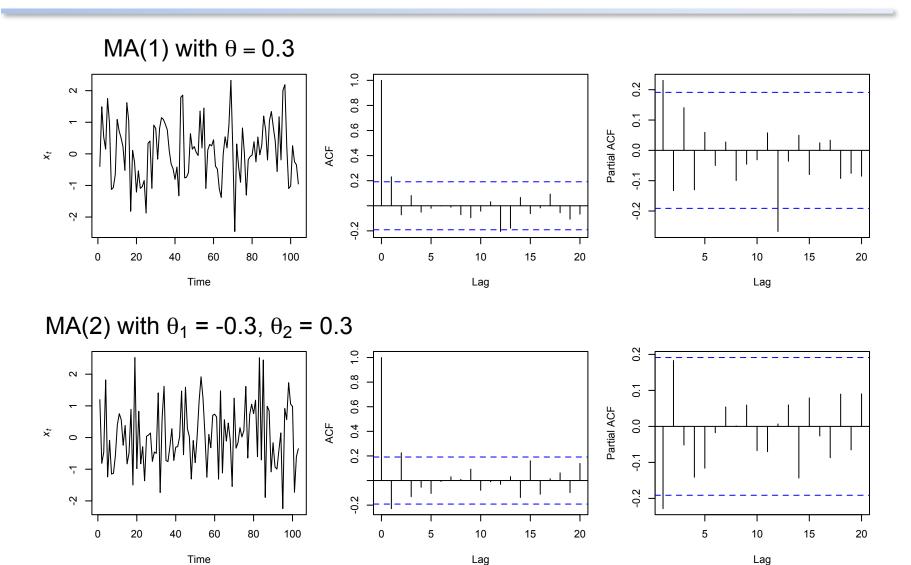
 We can write out an MA(q) model using the backward shift notation, such that

$$x_{t} = \left(1 + \theta_{1}\mathbf{B} + \theta\mathbf{B}^{2} + \dots + \theta_{q}\mathbf{B}^{q}\right)w_{t} = \theta_{q}\left(\mathbf{B}\right)w_{t}$$

- An MA process is invertible if it can be expressed as a stationary autoregressive process of infinite order without an error term
- For example, an MA(1) process with $\theta < |1|$

$$\begin{aligned} x_t &= \left(1 - \theta \mathbf{B}\right) w_t \\ w_t &= \left(1 - \theta \mathbf{B}\right)^{-1} x_t \\ w_t &= \left(1 + \theta \mathbf{B} + \theta^2 \mathbf{B}^2 + \dots\right) x_t = x_t + \theta x_{t-1} + \theta^2 x_{t-2} + \dots \end{aligned}$$

Examples of MA(q) processes



Using ACF & PACF for model ID

	ACF	PACF
AR(<i>p</i>)	Tails off slowly	Cuts off after lag-p
MA(q)	Cuts off after lag-q	Tails off slowly

Autoregressive moving average models

• A time series is autoregressive moving average, or ARMA(p,q), if it is stationary and

$$x_{t} = \phi_{1} x_{t-1} + \dots + \phi_{p} x_{t-p} + w_{t} + \theta_{1} w_{t-1} + \dots + \theta_{q} w_{t-q}$$

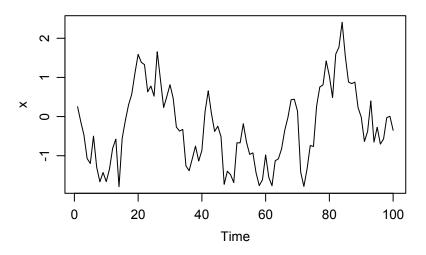
• We can write out an ARMA(p,q) model using the backward shift notation, such that

$$\phi_p\left(\mathbf{B}\right)x_t = \theta_q\left(\mathbf{B}\right)w_t$$

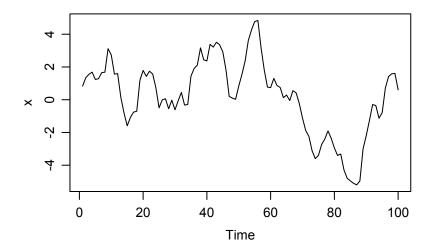
- ARMA models are *stationary* if all roots of $\phi(\mathbf{B}) > 1$
- ARMA models are *invertible* if all roots of $\theta(\mathbf{B}) > 1$

Examples of ARMA(p,q) processes

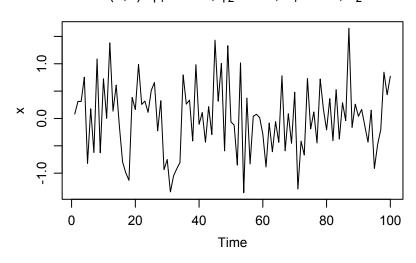
ARMA(3,1): $\phi_1 = 0.7$, $\phi_2 = 0.2$, $\phi_3 = -0.1$, $\theta_1 = 0.5$



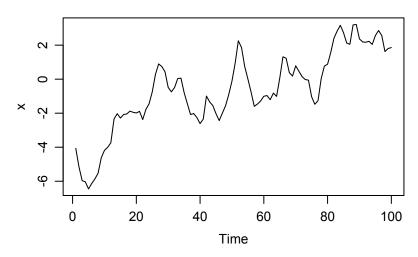
ARMA(1,3): $\phi_1 = 0.7$, $\theta_1 = 0.7$, $\theta_2 = 0.2$, $\theta_3 = 0.5$



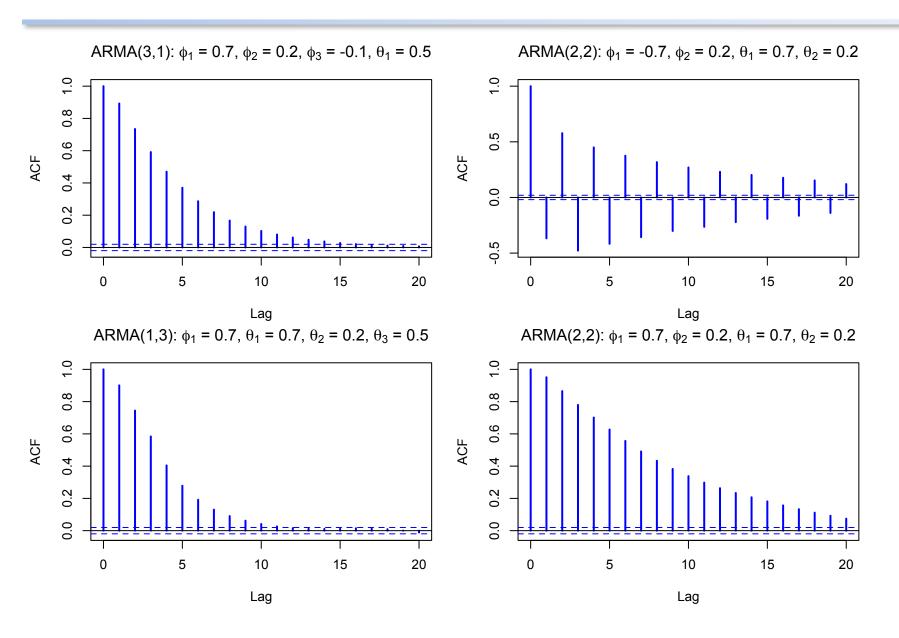
ARMA(2,2): $\phi_1 = -0.7$, $\phi_2 = 0.2$, $\theta_1 = 0.7$, $\theta_2 = 0.2$



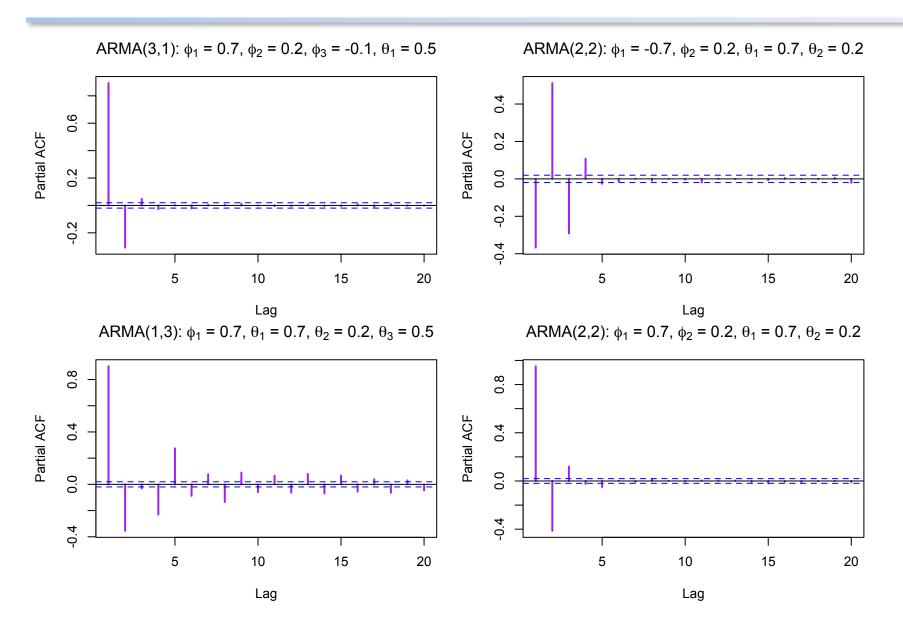
ARMA(2,2): $\phi_1 = 0.7$, $\phi_2 = 0.2$, $\theta_1 = 0.7$, $\theta_2 = 0.2$



ACF for ARMA(p,q) processes



PACF for ARMA(p,q) processes



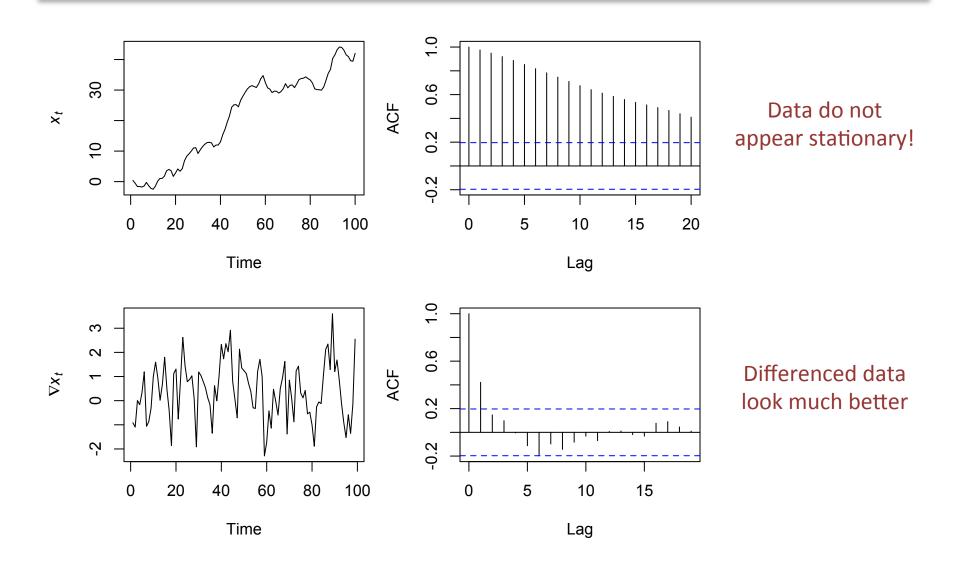
Using ACF & PACF for model ID

	ACF	PACF
AR(<i>p</i>)	Tails off slowly	Cuts off after lag-p
MA(q)	Cuts off after lag-q	Tails off slowly
ARMA(p,q)	Tails off (after lag [q-p])	Tails off (after lag [p-q])

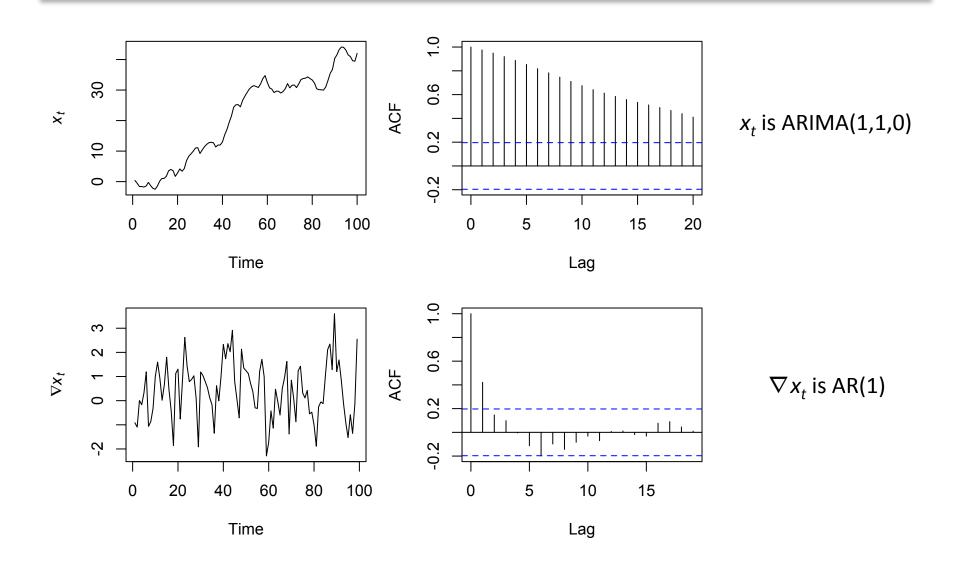
Nonstationary time series models

- If the data appear stationary, we can try various forms of ARMA models
- If not, differencing can often make them stationary
- This leads to the class of autoregressive integrated moving average (ARIMA) models
- ARIMA models are indexed with orders (p,d,q); the d indicates the order of differencing
- For d > 0, $\{x_t\}$ is an ARIMA(p,d,q) process if $(1-\mathbf{B})^d x_t$ is a causal ARMA(p,q) process

Example of an ARIMA model



Example of an ARIMA model



Topics for today

- Quick review of
 - Correlograms
 - White noise
 - Random walks
- Linear stationary models
- Autoregressive (AR)
- Moving average (MA)
- Autoregressive moving average (ARMA)
- Using ACF & PACF for model ID