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Topics for today

* Quick review of
o Correlograms
o White noise
o Random walks
* Linear stationary models
* Autoregressive (AR)
* Moving average (MA)
e Autoregressive moving average (ARMA)
e Using ACF & PACF for model ID
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White noise (WN)

A time series {w, : t = 1,2,3,...,n} is discrete white noise
if the variables w,, w,, w,, ..., w, are

1) independent, and

2) identically distributed with a mean of zero

Gaussian WN has the following 2"¢-order properties:
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Random walk (RW)

A time series {x,: t =1,2,3,...,n} is a random walk if
1) x,=x,,+w,, and

2) w,is white noise

RW has the following 2"9-order properties:

to° 1

Mw = O )/k (t) = to’z

pk(t)=\/t02(t+k)(72 1+%

Random walks are NOT stationary!



Random walk (RW)

Random walk with o = 1
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Iterative approach to model building

Postulate general
class of models

|ldentify candidate
model

Estimate parameters

Diagnostics: Use model for
is model adequate? Yes forecasting or control




Linear stationary models

* We saw last week that linear filters are a useful way
of modeling time series

* Here we extend those ideas to a general class of
models call autoregressive moving average (ARMA)



Autoregressive (AR) models

* An autoregressive model of order p, or AR(p),
is defined as

X, = q)lxt—l + ¢2xt—2 teoot (I)pxt—p W,

where we assume
1) w,is WN, and

2) ¢, # 0 fororder-p process

* Note: RW model is special case of AR(1) with ¢, =1



Stationary & nonstationary AR models

 We can write out an AR(p) model using the backward
shift notation, such that

¢,(B)x, =(1-¢,B-,B>-...-¢,B")x, =,

* If we treat B as a number, we can out write the
characteristic equation as

¢,(B)=0

* |n order to be stationary, all roots of char eqn must
exceed 1 in absolute value



Stationary & nonstationary AR models

* For example, a RW model is not stationary because
¢=1-B,and hence,B=1

* However, the AR(1) model x, = 0.5x, , + w, is
because ¢ =1—-0.5B, and hence,B=2>1
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Examples of AR(1) processes

AR(1) with ¢ = 0.9
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AR(1) with ¢ = 0.3
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Partial autocorrelation function

* The partial autocorrelation function (PACF) measures the
linear correlation of a series x, and x,,, with the linear
dependence of {X, ;,X; 5., X (.1} removed

 |tis defined as

-

Cor(xl,x0)=p(1) itk=1

Cor(xk - XX, = x(’)"l) itk=2

O =1

k-1
Xe =P X +PX, o+ B

k-1
Xo =Px; +Pyx, +o+ P x,



ACF & PACF for AR(3) processes

AR(3) with ¢1 = 0.7, ¢ = 0.2, ¢3 = -0.1
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AR(2)
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Using ACF & PACF for model ID

AR(p) Tails off slowly Cuts off after lag-p



Moving average (MA) models

* A moving average model of order g, or MA(q),
is defined as

X, =w,+0w,_ +...+6qwt_q
where w, is WN (with O mean)

* |tis simply the current error term plus a
weighted sum of the g most recent error

terms

e Because MA processes are finite sums of
stationary WN processes, they are themselves
stationary



Invertible MA models

* We can write out an MA(g) model using the backward
shift notation, such that

x,=(1+6,B+6B”+...+0,B')w, =0, (B)w

t

* An MA process is invertible if it can be expressed as a
stationary autoregressive process of infinite order
without an error term

* For example, an MA(1) process with 8 < | 1]
x,=(1-6B)w,

w, =(1-6B) x,

w, = (1+6B+62B2 +...)xt =x,+0x_ +0°x,, +...
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Examples of MA(qg) processes

MA(1) with 6 = 0.3

02 04 06 08 1.0

ACF

0.2
I
I
I
I
I
I
I
I
I
I
I
I
g
I
I -
I
I
I
I
I

0 20 40 60 80 100 0 5 10 15 20

Time Lag

o
7] o |
o
_ o |
o
l 5 2
~ L ___
o
] ‘ I | ||
‘ [T o
~
S
| | | | | |
0 20 40 60 80 100 0 5 0 5 0

rtial ACF

Pa

rtial ACF

Pa

-02 -01 0.0 01 0.2

0.2

-0.2  -0.1 0.0 0.1

|

Lag
‘ HEEA
] "\I
T T
5 10 5 0
Lag




Using ACF & PACF for model ID

AR(p) Tails off slowly Cuts off after lag-p

MA(q) Cuts off after lag-q Tails off slowly



Autoregressive moving average models

A time series is qutoregressive moving average,
or ARMA(p,q), if it is stationary and

X, =Qx_+-+¢x_ +w +0w_+---+0w,_

We can write out an ARMA(p,g) model using the
backward shift notation, such that

®,(B)x, =0, (B)w,

ARMA models are stationary if all roots of ¢(B) > 1

ARMA models are invertible if all roots of 6(B) > 1



Examples of ARMA(p,qg) processes

ARMA(3,1): ¢1 = 0.7, ¢, = 0.2, ¢p3=-0.1, 0, = 0.5 ARMA(2,2): ¢1 =-0.7, ¢ = 0.2, 6, =0.7, 0, = 0.2
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Partial ACF
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Using ACF & PACF for model ID

AR(p) Tails off slowly Cuts off after lag-p
MA(q) Cuts off after lag-q Tails off slowly

ARMA(p,q) Tails off (after lag [g-p]) Tails off (after lag [p-q])



Nonstationary time series models

* If the data appear stationary, we can try various
forms of ARMA models

* |f not, differencing can often make them stationary

* This leads to the class of autoregressive integrated
moving average (ARIMA) models

 ARIMA models are indexed with orders (p,d,q); the
d indicates the order of differencing

* For d >0, {x,} is an ARIMA(p,d,q) process if
(1-B)?x, is a causal ARMA(p,q) process
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Example of an ARIMA model
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Data do not
appear stationary!

Differenced data
look much better
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Example of an ARIMA model
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V x,is AR(1)



Topics for today

* Quick review of
o Correlograms
o White noise
o Random walks
* Linear stationary models
* Autoregressive (AR)
* Moving average (MA)
e Autoregressive moving average (ARMA)
e Using ACF & PACF for model ID



