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Example	of	a	.me	series	



Topics	for	today	

•  Expecta.on,	mean	&	variance	
•  Covariance	&	correla.on	
•  Sta.onarity	
•  Autocovariance	&	autocorrela.on	
•  Correlograms	
• White	noise	
•  Random	walks	
•  BackshiJ	&	difference	operators	



Expecta.on,	mean	&	variance	

•  The	expecta:on	(E)	of	a	variable	is	its	mean	value	
in	the	popula.on	

•  E(x)	≡	mean	of	x	=	µ

•  E([x	-	µ]2)	≡	mean	of	squared	devia.ons	about	µ	
≡	variance	=	σ2	

•  Can	es.mate	σ2	from	sample	as

Var(x) = 1
n−1

(xi − x )
2

i=1

n

∑



Covariance	

•  If	we	have	2	variables	(x,	y)	we	can	generalize	
variance	

Cov(x, y) = 1
n−1

(xi − x )(yi − y )
i=1

n

∑

γ (x, y) = E (x −µx )(y−µy )"# $%

•  Can	es.mate	γ	from	sample	as

σ x
2 = E (x −µx )(x −µx )[ ]

to	covariance	



Graphical	example	of	covariance	
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Correla.on	

•  Correla:on	is	a	dimensionless	measure	of	the	
linear	associa.on	between	2	variables	x	&	y	

•  It	is	simply	the	covariance	standardized	by	the	
standard	devia.ons	

Cor(x, y) = Cov(x, y)
sd(x)sd(y)

ρ(x, y) =
E (x −µx )(y−µy )"# $%

σ xσ y

=
γ (x, y)
σ xσ y

∈ −1,1[ ]

•  Can	es.mate	γ	from	sample	as



The	ensemble	&	sta.onarity	

•  Consider	again	the	mean	func.on	for	a	.me	series:	
µ(t)	=	E(xt)	

•  The	expecta.on	is	taken	across	an	ensemble	(popula.on)	
of	all	possible	.me	series	

• With	only	1	sample,	however,	we	must	es.mate	the	
mean	at	each	.me	point	by	the	observa.on	

•  If	E(xt)	is	constant	across	.me,	we	say	the	.me	series	is	
sta:onary	in	the	mean	



Sta.onarity	of	.me	series	

•  Sta:onarity	is	a	convenient	assump.on	that	allows	us	to	
describe	the	sta.s.cal	proper.es	of	a	.me	series.	

•  In	general,	a	.me	series	is	said	to	be	sta.onary	if	there	is	
1)  no	systema.c	change	in	the	mean	or	variance,	
2)  no	systema.c	trend,	and	
3)  no	periodic	varia.ons	or	seasonality	
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Which	of	these	are	sta.onary?	



Autocovariance	func.on	(ACVF)	

•  For	sta.onary	ts,	we	can	define	the	autocovariance	
func:on	(ACVF)	as	a	func.on	of	the	.me	lag	(k)	

γ k = E (xt −µx )(xt+k −µx )[ ]

•  Very	“smooth”	series	have	large	ACVF	for	large	k;	
“choppy”	series	have	ACVF	near	0	for	small	k	

ck =
1
n

(xt − x )(xt+k − x )
t=1

n−k

∑

•  Can	es.mate	γk	from	sample	as



Autocorrela.on	func.on	(ACF)	

•  The	autocorrela:on	func:on	(ACF)	is	simply	the	ACVF	
normalized	by	the	variance	

ρk =
γ k
σ 2 =

γ k
γ0

•  ACF	measures	the	correla.on	of	a	.me	series	against	a	
.me-shiJed	version	of	itself	(&	hence	the	term	“auto”)	

•  Can	es.mate	γk	from	sample	as	

rk =
ck
c0



Proper.es	of	the	ACF	

The	ACF	has	several	important	proper.es,	including	

1)  -1	≤	rk	≤	1,	
2)  	rk	=	r-k	(ie,	it’s	an	“even	func.on”),	
3)  	rk	of	periodic	func.on	is	itself	periodic	
4)  	rk	for	sum	of	2	indep	vars	is	sum	of	rk	for	each			



The	correlogram	

•  The	common	graphical	output	for	the	ACF	is	called	
the	correlogram,	and	it	has	the	following	features:	

1)  x-axis	indicates	lag	(0	to	k);	
2)  y-axis	is	autocorrela.on	rk	(-1	to	1);	
3)  lag-0	correla.on	(r0)	is	always	1	(it’s	a	ref	point);	
4)  If	ρk	=	0,	then	sampling	distribu.on	of	rk	is	

approx.	normal,	with	var	=	1/n;	

5)  Thus,	a	95%	conf	interval	is	given	by	

±
z1−α 2
n
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Correlogram	for	determinis.c	trend	
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Correlogram	for	sine	wave	
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Discrete (monthly) sine wave



Correlogram	for	trend	+	season	
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Correlogram	for	random	sequence	

Time

x t

0 20 40 60 80 100

30
50

70
90

0 5 10 15 20

-0
.4

0.
0

0.
4

0.
8

Lag
A
C
F

  
Random sequence of 10 numbers repeated 10 times



Correlogram	for	real	data	
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Par.al	autocorrela.on	func.on	

•  The	par.al	autocorrela:on	func:on	(PACF)	measures	the	
linear	correla.on	of	a	series	xt	and	xt+k	with	the	linear	
dependence	of	{xt-1,xt-2,…,xt-(k-1)}	removed	

φkk =
Cor x1, x0( ) =ρ 1( ) if k =1

Cor xk − xk
k−1, x0 − x0

k−1( ) if k ≥ 2

%

&
'

('

−1≤ φkk ≤1

xk
k−1 =β1xk−1 +β2xk−2 ++βk−1x1

x0
k−1 =β1x1 +β2x2 ++βk−1xk−1

•  It	is	defined	as	



Revisi.ng	the	temperature	ts	
N Hemisphere temperature anomalies (C)
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Cross-covariance	func.on	(CCVF)	

•  OJen	we	are	interested	in	looking	for	rela.onships	
between	2	different	.me	series	

• We	can	extend	the	idea	of	autocovariance	to	
examine	the	covariance	between	2	different	ts	

•  Define	the	cross-covariance	func.on	(CCVF)	for	x	&	y

gk
xy =

1
n

(yt − y )(xt+k − x )
t=1

n−k

∑



Cross-correla.on	func.on	(CCF)	

•  The	cross-correla:on	func:on	(CCF)	is	the	CCVF	
normalized	by	standard	devia.ons	of	x	&	y	

rk
xy =

gk
xy

SDxSDy



CCF	for	sunspots	and	lynx	
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Itera.ve	approach	to	model	building	

Postulate	general	
class	of	models	

Iden.fy	candidate	
model	

Es.mate	parameters	

Diagnos.cs:	
is	model	adequate?	

Use	model	for	
forecas.ng	or	control	No	 Yes	

As	we	will	see	later,	
ACF	&	PACF	will	be	
very	useful	here	



White	noise	(WN)	

A	.me	series	{wt	:	t	=	1,2,3,…,n}	is	discrete	white	noise	
if	the	variables	w1,	w2,	w3,	…,	wn	are	

1)  	independent,	and	
2)  	iden:cally	distributed	with	a	mean	of	zero	

Note:	At	this	point	we	are	making	no	assump.ons	
about	the	distribu.onal	form	of	{wt}!	

For	example,	wt	might	be	distributed	as	
•  DiscreteUniform({-2,-1,0,1,2})	
•  Normal(0,1)	



White	noise	(WN)	

A	.me	series	{wt	:	t	=	1,2,3,…,n}	is	discrete	white	noise	
if	the	variables	w1,	w2,	w3,	…,	wn	are	

1)  	independent,	and	
2)  	iden:cally	distributed	with	a	mean	of	zero	

µw = 0

Gaussian	WN	has	the	following	2nd-order	proper.es:	

γ k =
σ 2 if k  = 0
0 if k  ≠  0

"
#
$

%$
ρk =

1 if k  = 0
0 if k  ≠  0

"
#
$



White	noise	
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White noise with σ = 1



Random	walk	(RW)	

A	.me	series	{xt	:	t	=	1,2,3,…,n}	is	a	random	walk	if	

1)  	xt	=	xt-1	+	wt,	and	

2)  	wt	is	white	noise	

µw = 0

RW	has	the	following	2nd-order	proper.es:	

γ k t( ) = tσ 2 ρk t( ) =
tσ 2

tσ 2 t + k( )σ 2
=

1

1+ k t

Note:	Random	walks	are	NOT	sta.onary!	



Random	walk	(RW)	
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Random walk with σ = 1



The	backward	shiJ	operator	(B)	

•  Define	the	backward	shiJ	operator	by	

•  Or,	more	generally	as	

Bxt = xt−1

Bk xt = xt−k

•  So,	RW	model	can	be	expressed	as	
xt = Bxt +wt

1−B( ) xt = wt

xt = 1−B( )−1wt



The	difference	operator	(∇)	

•  Define	the	first	difference	operator	as	
∇xt = xt − xt−1

•  So,	first	differencing	a	RW	model	yields	WN	

∇ xt = xt−1 +wt( )
xt − xt−1 = xt−1 − xt−1 +wt

xt − xt−1 = wt



The	difference	operator	(∇)	

•  Differences	of	order	d	are	then	defined	by	
∇d = 1−B( )d

•  For	example,	twice	differencing	a	ts	

∇2xt = 1−B( )2 xt
∇2xt = 1−B−B+B

2( ) xt
∇2xt = xt − xt−1 − xt−1 + xt−2
∇2xt = xt − xt−1( )− xt−1 − xt−2( )



Difference	to	remove	trend/season	

•  Differencing	is	a	very	simple	means	for	removing	
a	trend	or	seasonal	effect	

•  The	1st-difference	removes	a	linear	trend,	a	2nd-
difference	would	remove	a	quadra.c	trend,	etc.	

•  For	seasonal	data,	using	a	1st-difference	with	lag	
=	period	removes	both	trend	&	seasonal	effects	

•  Pro:	no	parameters	to	es.mate	

•  Con:	no	es.mate	of	sta.onary	process	



First-difference	to	remove	trend	
N Hemisphere temperature anomalies (C)
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L Washington Surface Temperature (C)
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Topics	for	today	

•  Expecta.on,	mean	&	variance	
•  Covariance	&	correla.on	
•  Sta.onarity	
•  Autocovariance	&	autocorrela.on	
•  Correlograms	
• White	noise	
•  Random	walks	
•  BackshiJ	&	difference	operators	


