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Customer Water Demand, ML

Example of a time series
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Topics for today

Expectation, mean & variance
Covariance & correlation
Stationarity

Autocovariance & autocorrelation
Correlograms

White noise

Random walks

Backshift & difference operators



Expectation, mean & variance

* The expectation (E) of a variable is its mean value
in the population

* E(x) =meanofx=1

* E([x - u]?) = mean of squared deviations about u
= variance = 02

* Can estimate 0% from sample as



Covariance

* If we have 2 variables (x, y) we can generalize
variance

=E[(x-u)(x-u,)]
to covariance

y(x,3) =E[(x-u)(y-u,)]

 Can estimate y from sample as

Cov(x, y)——E(X X))y, =y)



Graphical example of covariance
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Correlation

e Correlation is a dimensionless measure of the
linear association between 2 variables x & y

* It is simply the covariance standardized by the
standard deviations

E[(X—Mx)(y—ﬂy)] _ y(x,y) E[

~1,1]
0.0, 0.0,

p(-xoy) =

* Can estimate y from sample as

Cov(x,y)
sd(x)sd(y)

Cor(x,y) =



The ensemble & stationarity

* Consider again the mean function for a time series:
ul(t) = E(x;)

* The expectation is taken across an ensemble (population)
of all possible time series

* With only 1 sample, however, we must estimate the
mean at each time point by the observation

* If E(x,) is constant across time, we say the time series is
stationary in the mean



Stationarity of time series

e Stationarity is a convenient assumption that allows us to
describe the statistical properties of a time series.

* |n general, a time series is said to be stationary if there is
1) no systematic change in the mean or variance,
2) no systematic trend, and
3) no periodic variations or seasonality



Which of these are stationary?
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Autocovariance function (ACVF)

* For stationary ts, we can define the autocovariance
function (ACVF) as a function of the time lag (k)

J/k = E[<'xt _lux)('xﬁk - Aux)]

* Very “smooth” series have large ACVF for large k;
“choppy” series have ACVF near O for small k

* Can estimate y, from sample as

S _
C, = ;Z(xt -X)(x,,, —X)
r=1



Autocorrelation function (ACF)

* The autocorrelation function (ACF) is simply the ACVF

normalized by the variance
Vi 7
pk = kz = £
o Y

* ACF measures the correlation of a time series against a
time-shifted version of itself (& hence the term “auto”)

* Can estimate y, from sample as
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Properties of the ACF

The ACF has several important properties, including
1) -1<r, <1,
2) r.=r,(ie, it's an “even function”),
3) r,of periodic function is itself periodic

4) r,for sum of 2 indep vars is sum of r, for each



The correlogram

* The common graphical output for the ACF is called
the correlogram, and it has the following features:

1) x-axis indicates lag (O to k);
2) y-axis is autocorrelation r, (-1 to 1);
3) lag-0 correlation (r,) is always 1 (it’s a ref point);

4) If p, = 0, then sampling distribution of r, is
approx. normal, with var = 1/n;

5) Thus, a 95% conf interval is given by
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Correlogram for deterministic trend

Linear trend {1,2,3,...,100}
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Correlogram for sine wave

Discrete (monthly) sine wave
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Correlogram for trend + season

Linear trend + seasonal effect
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Correlogram for random sequence

Random sequence of 10 numbers repeated 10 times
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Correlogram for real data

Lake Washington phytoplankton
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Partial autocorrelation function

* The partial autocorrelation function (PACF) measures the
linear correlation of a series x, and x,,, with the linear
dependence of {X, ;,X; 5., X (.1} removed

* |tis defined as
| Cor(x.x)=p(1)  ifk=1

Cor(xk - XX, = x(’)"l) itk=2

-1= <]
P =1 Pu

k-1
Xe =P X +PX, o+ B

k-1
Xo =Px; +Pyx, +o+ P x,



Revisiting the temperature ts

N Hemisphere temperature anomalies (C)
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Data from http://www.ncdc.noaa.gov/
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Partial ACF
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Cross-covariance function (CCVF)

» Often we are interested in looking for relationships
between 2 different time series

 We can extend the idea of autocovariance to
examine the covariance between 2 different ts

* Define the cross-covariance function (CCVF) for x & y

) 1 n-k _ _
8 = 200 =N = F)
t=1



Cross-correlation function (CCF)

* The cross-correlation function (CCF) is the CCVF
normalized by standard deviations of x & y

Xy

rkxy _ 8k
JSD,SD,
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Iterative approach to model building

Postulate general
class of models

As we will see later,
<— ACF & PACF will be

very useful here

|ldentify candidate
model

Estimate parameters

Diagnostics: Use model for
is model adequate? Yes forecasting or control




White noise (WN)

A time series{w, : t = 1,2,3,...,n} is discrete white noise
if the variables w,, w,, w,, ..., w, are

1) independent, and

2) identically distributed with a mean of zero
Note: At this point we are making no assumptions
about the distributional form of {w,}!

For example, w, might be distributed as
e DiscreteUniform({-2,-1,0,1,2})
* Normal(0,1)



White noise (WN)

A time series{w, : t = 1,2,3,...,n} is discrete white noise
if the variables w,, w,, w,, ..., w, are

1) independent, and

2) identically distributed with a mean of zero

Gaussian WN has the following 2"9-order properties:

2 e 1 ifk=0
-0 _J o 1tk=0 _
o y"{o k<0 TV 0 ifk =0
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Random walk (RW)

A time series {x,: t =1,2,3,...,n} is a random walk if
1) x,=x,,+w,, and

2) w,is white noise

RW has the following 2"9-order properties:

to° 1

Mw = O )/k (t) = t02

pk(t)=\/t02(t+k)(72 1+%

Note: Random walks are NOT stationary!



Random walk (RW)

Random walk with o = 1
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The backward shift operator (B)

* Define the backward shift operator by

Bx =x, _,

* Or, more generally as

B‘x, =x_,
* So, RW model can be expressed as
x, =Bx +w,
(1 — B)xt =W,
x,=(1-B) w,



The difference operator (V)

* Define the first difference operator as
th =X, =X

* So, first differencing a RW model yields WN
V(xt =X,_, + wt)
Xe =X =X =X W,

Xy =X =W,



The difference operator (V)

» Differences of order d are then defined by
V! =(1-B)"

* For example, twice differencing a ts

Vix, = (1 — B)2 X,



Difference to remove trend/season

* Differencing is a very simple means for removing
a trend or seasonal effect

* The 1st-difference removes a linear trend, a 2n9-
difference would remove a quadratic trend, etc.

* For seasonal data, using a 15t-difference with lag
= period removes both trend & seasonal effects

* Pro: no parameters to estimate

e Con: no estimate of stationary process



First-difference to remove trend

N Hemisphere temperature anomalies (C)
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First-difference® to remove season

L Washington Surface Temperature (C)
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