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Introduc;ons	

•  Who	are	we?	
•  Who	&	why	you’re	here?	
•  What	are	you	looking	to	
get	from	this	class?	



Days	and	Times	

•  Lectures	
When:	Tues	&	Thurs	from	1:30-2:50	
Where:	FSH	203	

•  Computer	lab	
When:	Thurs	from	3:00-3:50	
Where:	FSH	207	



Grading	

•  Weekly	homework	(30%	of	total)	
–  Assigned	Thurs	at	the	end	of	computer	lab	
–  Due	by	5:00	PM	the	following	Tues	
–  Based	on	material	from	lecture	&	computer	lab	

•  Research	project	&	paper	(40%	of	total)	
– Must	involve	some	form	of	;me	series	model(s)	
–  Due	by	11:59	PM	PST	on	March	10	

•  Two	anonymous	peer-reviews	(20%	of	total)	
–  One	review	each	for	2	colleague’s	papers	
–  Due	by	11:59	PM	PST	on	March	16	



Expecta;ons	for	final	project	

•  Research	paper	or	thesis	chapter	that	you	can	
turn	into	a	peer-reviewed	publica;on	

•  Ideally	a	solo	effort,	but	you	can	work	in	pairs	
•  Focus	on	applied	;me	series	analysis	

–  Univariate	or	mul;variate	

•  Short	format	similar	to	“Report”	in	Ecology	or	
“Rapid	Communica;on”	in	CJFAS	
– Max	of	20	pages,	inclusive	of	refs,	tables,	figs,	etc	
–  12-pt	font,	double-spaced	throughout	



Don’t	have	any	;me	series	data?	

•  RAM	Legacy	
hcp://ramlegacy.marinebiodiversity.ca/	

•  RAM’s	Stock-Recruitment	Database	
hcp://www.mscs.dal.ca/~myers/welcome.html	

•  Global	Popula;on	Dynamics	Database						
hcp://www3.imperial.ac.uk/cpb/databases/gpdd	

•  NOAA	NWFSC	Salmon	Popula;on	Summary		
hcps://www.webapps.nwfsc.noaa.gov/apex/f?p=261:home:0	

•  SAFS	
–  Alaska	Salmon	Program	
–  Lake	Washington	plankton	



Course	topics	

Week	1:	Decomposi;on,	covariance,	autocorrela;on	
Week	2:	Autoregressive	&	moving-average	models,	model	es;ma;on	
Week	3:	Univariate	&	mul;variate	state-space	models	
Week	4:	Covariates	&	seasonal	effects;	model	selec;on	
Week	5:	Dynamic	linear	models	
Week	6:	Forecas;ng	&	dynamic	factor	analysis	
Week	7:	Mul;stage	&	non-Gaussian	models	
Week	8:	Detec;on	of	outliers	&	perturba;on	analysis	
Week	9:	Spa;al	effects	&	hierarchical	models	
Week	10:	Presenta;ons	of	final	projects	
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Topics	for	today	(lecture)	

• Characteris;cs	of	;me	series	(ts)	
o  What	is	a	ts?	
o  Classifying	ts	
o  Trends	
o  Seasonality	(periodicity)	

• Classical	decomposi;on	



What	is	a	;me	series?	

•  A	=me	series	(ts)	is	a	set	of	observa;ons	
taken	sequen;ally	in	;me	

•  A	ts	can	be	represented	as	a	set	
	{xt	:	t	=	1,2,3,…,n}	=	{x1,x2,x3,…,xn}			

•  For	example,	
	{10,31,27,42,53,15}	



Example	of	a	;me	series	

Number	of	wild	spr/sum	Chinook	salmon	returning	to	the	Snake	R	



Classifica;on	of	;me	series	(I)	

I.  By	some	index	set	
A.  Interval	across	real	;me	x(t);	t	∈ [1.1,2.5]	

B.  Discrete	;me	xt	

1.  Equally	spaced;	t	=	{1,2,3,4,5}	
2.  Equally	spaced	w/	missing	values;	t	=	{1,2,4,5,6}	
3.  Unequally	spaced;	t	=	{2,3,4,6,9}	



Classifica;on	of	;me	series	(II)	

II.  By	underlying	process	
A.  Discrete	(eg,	total	#	of	fish	caught	per	trawl)	

B.  Con;nuous	(eg,	salinity,	temperature)	



Classifica;on	of	;me	series	(III)	

III.  By	number	of	values	recorded	
A.  Univariate/scalar	(eg,	total	#	of	fish	caught)	

B.  Mul;variate/vector	(eg,	#	of	each	spp	of	fish	caught)	



Classifica;on	of	;me	series	(IV)	

IV. By	type	of	values	recorded	
A.  Integer	(eg,	#	of	fish	in	5	min	trawl	=	2413)	

B.  Ra;onal	(eg,	frac;on	of	unclipped	fish	=	47/951)	

C.  Real	(eg,	fish	mass	=	10.2	g)	

D.  Complex	(eg,	cos[2π*2.43]	+	i	sin[2π*2.43])	



Sta;s;cal	analyses	of	;me	series	
•  Most	sta;s;cal	analyses	are	concerned	with	es;ma;ng	
proper;es	of	a	popula;on	from	a	sample	

•  Time	series	analysis,	however,	presents	a	different	
situa;on	

•  Although	we	could	vary	the	length	of	an	observed	
sample,	it	is	owen	impossible	to	make	mul;ple	
observa;ons	at	a	given	;me	

•  For	example,	one	can’t	observe	today’s	closing	price	of	
Microsow	stock	more	than	once	

•  This	makes	conven;onal	sta;s;cal	procedures,	based	
on	large	sample	es;mates,	inappropriate	
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Examples	of	;me	series	

How	would	we	describe	this	ts?	

flat	



Examples	of	;me	series	
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Annual numbers of lynx trapped in Canada from 1821-1934

How	would	we	describe	this	ts?	

“Regular”	cycle	



What	is	a	;me	series	model?	

•  A	=me	series	model	for	{xt}	is	a	specifica;on	of	the	
joint	distribu;ons	of	a	sequence	of	random	variables	
{Xt}	of	which	{xt}	is	thought	to	be	a	realiza;on	

•  For	example,	

“white”	noise: 	xt	=	wt	and	wt	~	N(0,1)	

autoregressive: 	xt	=	xt-1	+	wt	and	wt	~	N(0,1)	



Itera;ve	approach	to	model	building	

Postulate	general	
class	of	models	

Iden;fy	candidate	
model	

Es;mate	parameters	

Diagnos;cs:	
is	model	adequate?	

Use	model	for	
forecas;ng	or	control	No	 Yes	

Also	known	as	the		“Box-Jenkins	Approach”	



Classical	decomposi;on	of	;me	series	

•  Classical	decomposi=on	of	an	observed	;me	series	
is	a	fundamental	approach	in	;me	series	analysis	

•  The	idea	is	to	decompose	a	;me	series	{xt}	into	a	
trend	(mt),	a	seasonal	component	(st),	and	a	
remainder	(et)	

	xt	=	mt	+	st	+	et 



Linear	filtering	of	;me	series	

•  Beginning	with	the	trend	(mt),	we	need	a	
means	for	extrac;ng	a	“signal”	

•  A	common	method	is	to	use	linear	filters	

mt = λi xt+i
i=−∞

∞

∑

•  For	example,	moving	averages	with	equal	weights	

(FYI,	this	is	what	Excel	does)	mt =
1

2a+1
xt+i

i=−a

a

∑



Example	of	linear	filtering	
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Linear	filtering	of	;me	series	

•  Consider	case	where	season	is	based	on	12	months	
&	ts	begins	in	January	(t=1)	

•  Monthly	averages	over	year	will	result	in	t	=	6.5	for	
mt	(which	is	not	good)	

•  One	trick	is	to	average	(1)	the	average	of	Jan-Dec	&	
(2)	the	average	of	Feb-Jan		

mt =
1
2 xt−6 + xt−5 ++ xt−1 + xt + xt+1 ++ xt+5 + 1

2 xt+6
12



Example	of	linear	filtering	
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Example	of	linear	filtering	
N Hemisphere temperature anomalies (C)
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Data	from	hcp://www.ncdc.noaa.gov/	



Example	of	linear	filtering	
N Hemisphere temperature anomalies (C)
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Decomposi;on	of	;me	series	

Now	that	we	have	an	es;mate	of	mt,	we	
can	get	es;mate	of	st	simply	by	subtrac;on:	

ŝt = xt − m̂t



Example	of	linear	filtering	
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Decomposi;on	of	;me	series	

Now	that	we	have	an	es;mate	of	st,	we	can	
get	es;mate	of	et	simply	by	subtrac;on:	

êt = xt − m̂t − ŝt



Example	of	linear	filtering	
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Notes	on	decomposi;on	

•  Obtaining	a	“model”	for	a	ts	via	decomposi;on	
is	easy,	but…	

•  You	don’t	get	a	formula	with	which	to	obtain	
forecasts	

•  Let’s	look	at	an	alterna;ve	



Example	of	linear	trend	fi{ng	

•  A	simple	method	for	trend	extrac;on	is	to	
use	linear	regression	
mt = α+βt + et

•  Note:	the	t	index	here	could	be	a	non-
integer	in	cases	with	seasonal	data	



Example	of	linear	trend	fi{ng	
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Quarterly UK natural gas consumption from 1960-1986

mt = -135.6 + 0.0715t



Decomposi;on	of	;me	series	

•  Another	means	for	extrac;ng	a	trend	is	via	
nonparametric	regression	models	(eg,	LOESS)	

•  see	R	pkg	stl	



Moving	on	with	decomposi;on	

• We	have	decomposed	our	;me	series	into	
a	trend	plus	remainder	(st	+	et)	

	xt	=	(-135.6	+	0.0715t) +	st +	et	

•  Now	let’s	consider	the	seasonal	part	



Example	of	linear	trend	fi{ng	

xt =mt + st + et
xt = α+βt( )+ st + et

•  One	method	is	to	use	fixed	effects	(eg,	ANOVA)	



xt = −137+ 0.072 ⋅ t + s q t( )( )+ et
q t( ) = 4 t − t"# $%+1( ) −3

Example	of	linear	trend	fi{ng	

•  Adding	in	a	model	for	season	(ie,	quarters)	

•  So,	for	example,	if	q	=	10.25:	

q 10.25( ) = 4 10.25− 10.25"# $%+1( ) −3
q 10.25( ) = 4 10.25−10+1( ) −3
q 10.25( ) = 4 1.25( ) −3
q 10.25( ) = 5−3= 2

This	is	the	“floor”	func;on	



xt = −137+ 0.072 ⋅ t +θ q t( )( )+ et

q t( ) = 4 t − t"# $%+1( ) −3

Example	of	linear	trend	fi{ng	

•  Our	final	decomposi;on	model	

s q t( )( ) =

0 if q = 1
−0.42 if q = 2
−0.99 if q = 3
−0.34 if q = 4

"

#

$
$

%

$
$



Example	of	trend	+	season	fi{ng	
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Are	the	residuals	sta;onary?	
•  The	goal	with	decomposi;on	is	to	reduce	the	;me	
series	to	a	trend,	season	&	sta;onary	residuals	
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Residuals from classical decomposition model



Itera;ve	approach	to	model	building	

Postulate	general	
class	of	models	

Iden;fy	candidate	
model	

Es;mate	parameters	

Diagnos;cs:	
is	model	adequate?	

Use	model	for	
forecas;ng	or	control	No	 Yes	



Summary	

•  This	was	a	brief	overview—there	is	lots	of	stuff	
we	didn’t	cover	

•  Please	ask	for	help/guidance	if	you’re	looking	for	
more	details,	other	R	code,	etc	


