Applied Time Series Analysis FISH 507

Eric Ward
Mark Scheuerell
Eli Holmes

Introductions

- Who are we?
- Who \& why you're here?
- What are you looking to get from this class?

Days and Times

- Lectures

When: Tues \& Thurs from 1:30-2:50
Where: FSH 203

- Computer lab

When: Thurs from 3:00-3:50
Where: FSH 207

Grading

- Weekly homework (30\% of total)
- Assigned Thurs at the end of computer lab
- Due by 5:00 PM the following Tues
- Based on material from lecture \& computer lab
- Research project \& paper (40\% of total)
- Must involve some form of time series model(s)
- Due by 11:59 PM PST on March 10
- Two anonymous peer-reviews (20\% of total)
- One review each for 2 colleague's papers
- Due by 11:59 PM PST on March 16

Expectations for final project

- Research paper or thesis chapter that you can turn into a peer-reviewed publication
- Ideally a solo effort, but you can work in pairs
- Focus on applied time series analysis
- Univariate or multivariate
- Short format similar to "Report" in Ecology or "Rapid Communication" in CJFAS
- Max of 20 pages, inclusive of refs, tables, figs, etc
- 12-pt font, double-spaced throughout

Don't have any time series data?

- RAM Legacy http://ramlegacy.marinebiodiversity.ca/
- RAM's Stock-Recruitment Database http://www.mscs.dal.ca/~myers/welcome.html
- Global Population Dynamics Database
http://www3.imperial.ac.uk/cpb/databases/gpdd
- NOAA NWFSC Salmon Population Summary
https://www.webapps.nwfsc.noaa.gov/apex/f?p=261:home:0
- SAFS
- Alaska Salmon Program
- Lake Washington plankton

Course topics

Week 1: Decomposition, covariance, autocorrelation
Week 2: Autoregressive \& moving-average models, model estimation
Week 3: Univariate \& multivariate state-space models
Week 4: Covariates \& seasonal effects; model selection
Week 5: Dynamic linear models
Week 6: Forecasting \& dynamic factor analysis
Week 7: Multistage \& non-Gaussian models
Week 8: Detection of outliers \& perturbation analysis
Week 9: Spatial effects \& hierarchical models
Week 10: Presentations of final projects

An introduction to time series and their analysis

Mark Scheuerell

FISH 507 - Applied Time Series Analysis

3 January 2017

Topics for today (lecture)

- Characteristics of time series (ts)
-What is a ts?
- Classifying ts
- Trends
- Seasonality (periodicity)
- Classical decomposition

What is a time series?

- A time series (ts) is a set of observations taken sequentially in time
- A ts can be represented as a set

$$
\left\{x_{t}: t=1,2,3, \ldots, n\right\}=\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\}
$$

- For example, \{10,31,27,42,53,15\}

Example of a time series

Number of wild spr/sum Chinook salmon returning to the Snake R

Classification of time series (I)

I. By some index set
A. Interval across real time $x(t) ; t \in[1.1,2.5]$
B. Discrete time x_{t}

1. Equally spaced; $t=\{1,2,3,4,5\}$
2. Equally spaced $w /$ missing values; $t=\{1,2,4,5,6\}$
3. Unequally spaced; $t=\{2,3,4,6,9\}$

Classification of time series (II)

II. By underlying process
A. Discrete (eg, total \# of fish caught per trawl)
B. Continuous (eg, salinity, temperature)

Classification of time series (III)

III. By number of values recorded
A. Univariate/scalar (eg, total \# of fish caught)
B. Multivariate/vector (eg, \# of each spp of fish caught)

Classification of time series (IV)

IV. By type of values recorded
A. Integer (eg, \# of fish in 5 min trawl = 2413)
B. Rational (eg, fraction of unclipped fish $=47 / 951$)
C. Real (eg, fish mass $=10.2 \mathrm{~g}$)
D. Complex $\left(\mathrm{eg}, \cos \left[2 \pi^{*} 2.43\right]+i \sin \left[2 \pi^{*} 2.43\right]\right)$

Statistical analyses of time series

- Most statistical analyses are concerned with estimating properties of a population from a sample
- Time series analysis, however, presents a different situation
- Although we could vary the length of an observed sample, it is often impossible to make multiple observations at a given time
- For example, one can't observe today's closing price of Microsoft stock more than once
- This makes conventional statistical procedures, based on large sample estimates, inappropriate

Examples of time series

Numbers of users connected to the Internet every minute

How would we describe this ts?

Examples of time series

Annual numbers of lynx trapped in Canada from 1821-1934

How would we describe this ts?

What is a time series model?

- A time series model for $\left\{x_{t}\right\}$ is a specification of the joint distributions of a sequence of random variables $\left\{X_{t}\right\}$ of which $\left\{X_{t}\right\}$ is thought to be a realization
- For example,

$$
\begin{array}{ll}
\text { "white" noise: } & x_{t}=w_{t} \text { and } w_{t} \sim N(0,1) \\
\text { autoregressive: } & x_{t}=x_{t-1}+w_{t} \text { and } w_{t} \sim N(0,1)
\end{array}
$$

Iterative approach to model building

Also known as the "Box-Jenkins Approach"

Classical decomposition of time series

- Classical decomposition of an observed time series is a fundamental approach in time series analysis
- The idea is to decompose a time series $\left\{x_{t}\right\}$ into a trend $\left(m_{t}\right)$, a seasonal component $\left(s_{t}\right)$, and a remainder $\left(e_{t}\right)$

$$
x_{t}=m_{t}+s_{t}+e_{t}
$$

Linear filtering of time series

- Beginning with the trend $\left(m_{t}\right)$, we need a means for extracting a "signal"
- A common method is to use linear filters

$$
m_{t}=\sum_{i=-\infty}^{\infty} \lambda_{i} x_{t+i}
$$

- For example, moving averages with equal weights

$$
m_{t}=\sum_{i=-a}^{a} \frac{1}{2 a+1} x_{t+i}
$$

(FYI, this is what Excel does)

Example of linear filtering

Linear filtering of time series

- Consider case where season is based on 12 months \& ts begins in January ($\mathrm{t}=1$)
- Monthly averages over year will result in $t=6.5$ for m_{t} (which is not good)
- One trick is to average (1) the average of Jan-Dec \& (2) the average of Feb-Jan

$$
m_{t}=\frac{\frac{1}{2} x_{t-6}+x_{t-5}+\cdots+x_{t-1}+x_{t}+x_{t+1}+\cdots+x_{t+5}+\frac{1}{2} x_{t+6}}{12}
$$

Example of linear filtering

Average monthly temperature at Nottingham, UK (1920-1939)

Example of linear filtering

Example of linear filtering

Decomposition of time series

Now that we have an estimate of m_{t}, we can get estimate of s_{t} simply by subtraction:

$$
\hat{s}_{t}=x_{t}-\hat{m}_{t}
$$

Example of linear filtering

Seasonal effect on N Hemis temp anomalies

Decomposition of time series

Now that we have an estimate of s_{t}, we can get estimate of e_{t} simply by subtraction:

$$
\hat{e}_{t}=x_{t}-\hat{m}_{t}-\hat{s}_{t}
$$

Example of linear filtering

Decomposition of additive time series

Notes on decomposition

- Obtaining a "model" for a ts via decomposition is easy, but...
- You don't get a formula with which to obtain forecasts
- Let's look at an alternative

Example of linear trend fitting

- A simple method for trend extraction is to use linear regression

$$
m_{t}=\alpha+\beta t+e_{t}
$$

- Note: the t index here could be a noninteger in cases with seasonal data

Example of linear trend fitting

Quarterly UK natural gas consumption from 1960-1986

Decomposition of time series

- Another means for extracting a trend is via nonparametric regression models (eg, LOESS)
- see R pkg stl

Moving on with decomposition

- We have decomposed our time series into a trend plus remainder $\left(s_{t}+e_{t}\right)$

$$
x_{t}=(-135.6+0.0715 t)+s_{t}+e_{t}
$$

- Now let's consider the seasonal part

Example of linear trend fitting

- One method is to use fixed effects (eg, ANOVA)

$$
\begin{aligned}
& x_{t}=m_{t}+s_{t}+e_{t} \\
& x_{t}=(\alpha+\beta t)+s_{t}+e_{t}
\end{aligned}
$$

Example of linear trend fitting

- Adding in a model for season (ie, quarters)

$$
\begin{aligned}
& x_{t}=-137+0.072 \cdot t+s(q(t))+e_{t} \\
& q(t)=4(t-\lfloor t\rfloor+1)-3
\end{aligned}
$$

- So, for This is the "floop"" function

$$
\begin{aligned}
& q(10.25)=4(10.25-\lfloor 10.25\rfloor+1)-3 \\
& q(10.25)=4(10.25-10+1)-3 \\
& q(10.25)=4(1.25)-3 \\
& q(10.25)=5-3=2
\end{aligned}
$$

Example of linear trend fitting

- Our final decomposition model

$$
\begin{aligned}
& x_{t}=-137+0.072 \cdot t+\theta(q(t))+e_{t} \\
& q(t)=4(t-\lfloor t\rfloor+1)-3 \\
& s(q(t))=\left\{\begin{array}{cc}
0 & \text { if } q=1 \\
-0.42 & \text { if } q=2 \\
-0.99 & \text { if } q=3 \\
-0.34 & \text { if } q=4
\end{array}\right.
\end{aligned}
$$

Example of trend + season fitting

Quarterly UK natural gas consumption from 1960-1986

Are the residuals stationary?

- The goal with decomposition is to reduce the time series to a trend, season \& stationary residuals

Residuals from classical decomposition model

Iterative approach to model building

Summary

- This was a brief overview-there is lots of stuff we didn' t cover
- Please ask for help/guidance if you're looking for more details, other R code, etc

