Applied Time Series Analysis FISH 507

Eric Ward Mark Scheuerell Eli Holmes

Introductions

- Who are we?
- Who & why you're here?
- What are you looking to get from this class?

Days and Times

• Lectures

When: Tues & Thurs from 1:30-2:50 Where: FSH 203

Computer lab
 When: Thurs from 3:00-3:50
 Where: FSH 207

Grading

- Weekly homework (30% of total)
 - Assigned Thurs at the end of computer lab
 - Due by 5:00 PM the following Tues
 - Based on material from lecture & computer lab
- Research project & paper (40% of total)
 - Must involve some form of time series model(s)
 - Due by 11:59 PM PST on March 10
- Two anonymous peer-reviews (20% of total)
 - One review each for 2 colleague's papers
 - Due by 11:59 PM PST on March 16

Expectations for final project

- Research paper or thesis chapter that you can turn into a peer-reviewed publication
- Ideally a solo effort, but you can work in pairs
- Focus on applied time series analysis

 Univariate or multivariate
- Short format similar to "Report" in *Ecology* or "Rapid Communication" in *CJFAS*
 - Max of 20 pages, inclusive of refs, tables, figs, etc
 - 12-pt font, double-spaced throughout

Don't have any time series data?

- RAM Legacy
 <u>http://ramlegacy.marinebiodiversity.ca/</u>
- RAM's Stock-Recruitment Database
 <u>http://www.mscs.dal.ca/~myers/welcome.html</u>
- Global Population Dynamics Database
 <u>http://www3.imperial.ac.uk/cpb/databases/gpdd</u>
- NOAA NWFSC Salmon Population Summary https://www.webapps.nwfsc.noaa.gov/apex/f?p=261:home:0
- SAFS
 - Alaska Salmon Program
 - Lake Washington plankton

Course topics

- Week 1: Decomposition, covariance, autocorrelation
- Week 2: Autoregressive & moving-average models, model estimation
- Week 3: Univariate & multivariate state-space models
- Week 4: Covariates & seasonal effects; model selection
- Week 5: Dynamic linear models
- Week 6: Forecasting & dynamic factor analysis
- Week 7: Multistage & non-Gaussian models
- Week 8: Detection of outliers & perturbation analysis
- Week 9: Spatial effects & hierarchical models
- Week 10: Presentations of final projects

An introduction to time series and their analysis

Mark Scheuerell

FISH 507 – Applied Time Series Analysis

3 January 2017

Topics for today (lecture)

- Characteristics of time series (ts)
 - $_{\circ}\,$ What is a ts?
 - $_{\circ}\,$ Classifying ts
 - $_{\circ}$ Trends
 - Seasonality (periodicity)
- Classical decomposition

What is a time series?

- A *time series* (ts) is a set of observations taken sequentially in time
- A ts can be represented as a set

 $\{x_t: t=1,2,3,...,n\}=\{x_1,x_2,x_3,...,x_n\}$

• For example,

 $\{10, 31, 27, 42, 53, 15\}$

Example of a time series

Number of wild spr/sum Chinook salmon returning to the Snake R

Classification of time series (I)

- I. By some index set
 - A. Interval across real time x(t); $t \in [1.1, 2.5]$
 - B. Discrete time x_t
 - 1. Equally spaced; $t = \{1, 2, 3, 4, 5\}$
 - 2. Equally spaced w/ missing values; $t = \{1, 2, 4, 5, 6\}$
 - 3. Unequally spaced; $t = \{2,3,4,6,9\}$

Classification of time series (II)

II. By underlying process

- A. Discrete (eg, total # of fish caught per trawl)
- B. Continuous (eg, salinity, temperature)

Classification of time series (III)

- III. By number of values recorded
 - A. Univariate/scalar (eg, total # of fish caught)
 - B. Multivariate/vector (eg, # of each spp of fish caught)

Classification of time series (IV)

IV. By type of values recorded

- A. Integer (eg, # of fish in 5 min trawl = 2413)
- B. Rational (eg, fraction of unclipped fish = 47/951)
- C. Real (eg, fish mass = 10.2 g)
- D. Complex (eg, $cos[2\pi^*2.43] + i sin[2\pi^*2.43]$)

Statistical analyses of time series

- Most statistical analyses are concerned with estimating properties of a population from a sample
- Time series analysis, however, presents a different situation
- Although we could vary the length of an observed sample, it is often impossible to make multiple observations at a given time
- For example, one can't observe today's closing price of Microsoft stock more than once
- This makes conventional statistical procedures, based on large sample estimates, inappropriate

Examples of time series

Numbers of users connected to the Internet every minute

How would we describe this ts?

Examples of time series

How would we describe this ts?

What is a time series model?

- A time series model for {x_t} is a specification of the joint distributions of a sequence of random variables {X_t} of which {x_t} is thought to be a realization
- For example,

"white" noise: $x_t = w_t$ and $w_t \sim N(0,1)$ autoregressive: $x_t = x_{t-1} + w_t$ and $w_t \sim N(0,1)$

Iterative approach to model building

Classical decomposition of time series

- *Classical decomposition* of an observed time series is a fundamental approach in time series analysis
- The idea is to decompose a time series {x_t} into a trend (m_t), a seasonal component (s_t), and a remainder (e_t)

 $x_t = m_t + s_t + e_t$

Linear filtering of time series

- Beginning with the trend (m_t) , we need a means for extracting a "signal"
- A common method is to use linear filters

$$m_t = \sum_{i=-\infty}^{\infty} \lambda_i x_{t+i}$$

• For example, moving averages with equal weights

$$m_t = \sum_{i=-a}^{a} \frac{1}{2a+1} x_{t+i} \qquad \text{(FYI, this is what Excel does)}$$

Linear filtering of time series

- Consider case where season is based on 12 months & ts begins in January (t=1)
- Monthly averages over year will result in t = 6.5 for m_t (which is not good)
- One trick is to average (1) the average of Jan-Dec &
 (2) the average of Feb-Jan

$$m_t = \frac{\frac{1}{2}x_{t-6} + x_{t-5} + \dots + x_{t-1} + x_t + x_{t+1} + \dots + x_{t+5} + \frac{1}{2}x_{t+6}}{12}$$

Data from http://www.ncdc.noaa.gov/

Time

Decomposition of time series

Now that we have an estimate of m_t , we can get estimate of s_t simply by subtraction:

$$\hat{s}_t = x_t - \hat{m}_t$$

Decomposition of time series

Now that we have an estimate of s_t , we can get estimate of e_t simply by subtraction:

$$\hat{e}_t = x_t - \hat{m}_t - \hat{s}_t$$

Decomposition of additive time series

Notes on decomposition

- Obtaining a "model" for a ts via decomposition is easy, but...
- You don't get a formula with which to obtain forecasts
- Let's look at an alternative

A simple method for trend extraction is to use linear regression

 $m_t = \alpha + \beta t + e_t$

• Note: the *t* index here could be a noninteger in cases with seasonal data

 $(u)_{t} = -135.6 + 0.0715t$ $(u)_{t} = 0.0715t$ $(u)_{t} = 0.0715t$

Quarterly UK natural gas consumption from 1960-1986

Decomposition of time series

- Another means for extracting a trend is via nonparametric regression models (eg, LOESS)
- see R pkg stl

Moving on with decomposition

• We have decomposed our time series into a trend plus remainder $(s_t + e_t)$

 $x_t = (-135.6 + 0.0715t) + s_t + e_t$

Now let's consider the seasonal part

• One method is to use fixed effects (eg, ANOVA)

$$x_t = m_t + s_t + e_t$$
$$x_t = (\alpha + \beta t) + s_t + e_t$$

• Adding in a model for season (ie, quarters)

$$x_{t} = -137 + 0.072 \cdot t + s(q(t)) + e_{t}$$
$$q(t) = 4(t - (t) + 1) - 3$$

• So, for example, if
$$q = 10.25$$
:

$$q(10.25) = 4(10.25 - \lfloor 10.25 \rfloor + 1) - 3$$
$$q(10.25) = 4(10.25 - 10 + 1) - 3$$
$$q(10.25) = 4(1.25) - 3$$
$$q(10.25) = 5 - 3 = 2$$

• Our final decomposition model

$$x_{t} = -137 + 0.072 \cdot t + \theta(q(t)) + e_{t}$$

$$q(t) = 4(t - \lfloor t \rfloor + 1) - 3$$

$$\begin{cases} 0 & \text{if } q = 1 \\ -0.42 & \text{if } q = 2 \\ -0.99 & \text{if } q = 3 \\ -0.34 & \text{if } q = 4 \end{cases}$$

Example of trend + season fitting

Are the residuals stationary?

• The goal with decomposition is to reduce the time series to a trend, season & stationary residuals

Iterative approach to model building

Summary

- This was a *brief* overview—there is *lots* of stuff we didn't cover
- Please ask for help/guidance if you're looking for more details, other R code, etc