
1 Overview of dynamic linear models

Here we will use MARSS to analyze dynamic linear models (DLMs), wherein the
parameters in a regression model are treated as time-varying. DLMs are used
commonly in econometrics, but have received less attention in the ecological lit-
erature (c.f., Lamon et al. 1998, Scheuerell and Williams 2005). Our treatment
of DLMs is rather cursory—we direct the reader to excellent textbooks by Pole
et al. (1994) and Petris et al. (2009) for more in-depth treatments of DLMs.
The former focuses on Bayesian estimation whereas the latter addresses both
likelihood-based and Bayesian estimation methods.

We begin our description of DLMs with a static regression model, wherein
the ith observation is a linear function of an intercept, predictor variable(s), and
a random error term. For example, if we had one predictor variable (F), we
could write the model as

yi = α+ βFi + vi, (1)

where the α is the intercept, β is the regression slope, Fi is the predictor variable
matched to the ith observation (yi), and vi ∼ N(0, r). It is important to note
here that there is no implicit ordering of the index i. That is, we could shuffle
any/all of the (yi, Fi) pairs in our dataset with no effect on our ability to estimate
the model parameters. We can write the model in Eqn 1 using vector notation,
such that

yi =
(
1 Fi

)
×
(
α
β

)
+ vi

= F>i θ + vi, (2)

and F>i = (1, Fi) and θ = (α, β)>.
In a DLM, however, the regression parameters are dynamic in that they

“evolve” over time. For a single observation at time t, we can write

yt = F>t θt + vt, (3)

where Ft is a column vector of regression variables at time t, θt is a column
vector of regression parameters at time t and vt ∼ N(0, r). This formulation
presents two features that distinguish it from Eqn 2. First, the observed data
are explicitly time ordered (i.e., y = {y1, y2, y3, ..., yT }), which means we expect
them to contain implicit information. Second, the relationship between the
observed datum and the predictor variables are unique at every time t (i.e.,
θ = {θ1,θ2,θ3, ...,θT }).

However, closer examination of Eqn 3 reveals an apparent complication for
parameter estimation. With only one datum at each time step t, we could,
at best, estimate only one regression parameter, and even then, the 1:1 cor-
respondence between data and parameters would preclude any estimation of
parameter uncertainty. To address this shortcoming, we return to the time
ordering of model parameters. Rather than assume the regression parameters

1

are independent from one time step to another, we instead model them as an
autoregressive process where

θt = Gtθt−1 + wt, (4)

Gt is the parameter “evolution” matrix, and wt is a vector of process errors,
such that wt ∼ MVN(0,Q). The elements of Gt may be known and fixed a
priori, or unknown and estimated from the data. Although we allow for Gt to
be time-varying, we will typically assume that it is time invariant.

The idea is that the evolution matrix Gt deterministically maps the pa-
rameter space from one time step to the next, so the parameters at time t are
temporally related to those before and after. However, the process is corrupted
by stochastic error, which amounts to a degradation of information over time.
If the diagonal elements of Q are relatively large, then the parameters can vary
widely from t to t + 1. If Q = 0, then θ1 = θ2 = θT and we are back to the
static model in Eqn 1.

2 Example of a univariate DLM

Let’s consider an example from the literature. Scheuerell & Williams (2005)
used a DLM to examine the relationship between marine survival of Chinook
salmon and an index of ocean upwelling strength along the west coast of the
USA. Upwelling brings cool, nutrient-rich waters from the deep ocean to shal-
lower coastal areas. Scheuerell & Williams hypothesized that stronger upwelling
in April should create better growing conditions for phytoplankton, which would
then translate into more zooplankton. In turn, juvenile salmon (“smolts”) enter-
ing the ocean in May and June should find better foraging opportunities. Thus,
for smolts entering the ocean in year t,

survivalt = αt + βtFt + vt with vt ∼ N(0, r), (5)

and Ft is the coastal upwelling index (cubic meters of seawater per second per
100 m of coastline) for the month of April in year t.

Both the intercept and slope are time varying, so

αt = αt−1 + w
(α)
t with w

(α)
t ∼ N(0, qα); and (6)

βt = βt−1 + w
(β)
t with w

(β)
t ∼ N(0, qβ). (7)

If we define θt = (αt, βt)
>, Gt = I ∀ t, wt = (w

(1)
t , w

(2)
t)>, and Q = diag(q1, q2),

we get Eqn 4. If we define yt = survivalt and Ft = (1, Ft)
>, we can write out

the full univariate DLM as a state-space model with the following form:

θt = Gtθt−1 + wt with wt ∼ MVN(0,Q);

yt = F>t θt + vt with vt ∼ N(0, r);

θ0 ∼ MVN(π0,Λ0).

(8)

2

Eqn 8 is, not surprisingly, equivalent to our standard MARSS model:

xt = Btxt−1 + ut + Ctct + wt with wt ∼ MVN(0,Qt);

yt = Ztxt + at + Dtdt + vt with vt ∼ MVN(0,Rt);

x0 ∼ MVN(π,Λ);

(9)

where xt = θt, Bt = Gt, ut = Ct = ct = 0, yt = yt (i.e., yt is 1 x 1), Zt = F>t ,
at = Dt = dt = 0, and Rt = r (i.e., Rt is 1 x 1).

2.1 Fitting a univariate DLM with MARSS

Now let’s go ahead and analyze the DLM specified in Eqns 5–8. We begin by
getting the data set, which has 3 columns for 1) the year the salmon smolts
migrated to the ocean (year), 2) logit-transformed survival1 (logit.s), and 3)
the coastal upwelling index for April (CUI.apr). There are 42 years of data
(1964–2005).

load the data

data(SalmonSurvCUI)

get time indices

years = SalmonSurvCUI[,1]

number of years of data

TT = length(years)

get response data: logit(survival)

dat = matrix(SalmonSurvCUI[,2],nrow=1)

As we have seen in other case studies, standardizing our covariate(s) to have
zero-mean and unit-variance can be helpful in model fitting and interpretation.
In this case, it’s a good idea because the variance of CUI.apr is orders of
magnitude greater than survival.

get regressor variable

CUI = SalmonSurvCUI[,3]

z-score the CUI

CUI.z = matrix((CUI - mean(CUI))/sqrt(var(CUI)), nrow=1)

number of regr params (slope + intercept)

m = dim(CUI.z)[1] + 1

Plots of logit-transformed survival and the z-scored April upwelling index are
shown in Figure 1.

Next, we need to set up the appropriate matrices and vectors for MARSS.
Let’s begin with those for the process equation because they are straightforward.

1Survival in the original context was defined as the proportion of juveniles that survive
to adulthood. Thus, we use the logit function, defined as logit(p) = loge(p/[1 − p]), to map
survival from the open interval (0,1) onto the interval (−∞,∞), which allows us to meet our
assumption of normally distributed observation errors.

3

−
6.

0
−

4.
0

Lo
gi

t(
s)

−
3

−
1

1

C
U

I

1965 1970 1975 1980 1985 1990 1995 2000 2005

Year of ocean entry

Figure 1: Time series of logit-transformed marine survival estimates for
Snake River spring/summer Chinook salmon (top) and z -scores of the
coastal upwelling index at 45N 125W (bottom). The x -axis indicates the
year that the salmon smolts entered the ocean.

for process eqn

B = diag(m) ## 2x2; Identity

U = matrix(0,nrow=m,ncol=1) ## 2x1; both elements = 0

Q = matrix(list(0),m,m) ## 2x2; all 0 for now

diag(Q) = c("q.alpha","q.beta") ## 2x2; diag = (q1,q2)

Defining the correct form for the observation model is a little more tricky,
however, because of how we model the effect(s) of explanatory variables. In a
DLM, we need to use Zt (instead of dt) as the matrix of known regressors/drivers
that affect yt, and xt (instead of Dt) as the regression parameters. Therefore,
we need to set Zt equal to an n x m x T array, where n is the number of response
variables (= 1; yt is univariate), m is the number of regression parameters (=
intercept + slope = 2), and T is the length of the time series (= 42).

for observation eqn

Z = array(NA, c(1,m,TT)) ## NxMxT; empty for now

Z[1,1,] = rep(1,TT) ## Nx1; 1's for intercept

Z[1,2,] = CUI.z ## Nx1; regr variable

A = matrix(0) ## 1x1; scalar = 0

R = matrix("r") ## 1x1; scalar = r

Lastly, we need to define our lists of initial starting values and model matri-
ces/vectors.

only need starting values for regr parameters

inits.list = list(x0=matrix(c(0, 0), nrow=m))

4

list of model matrices & vectors

mod.list = list(B=B, U=U, Q=Q, Z=Z, A=A, R=R)

And now we can fit our DLM with MARSS.

fit univariate DLM

dlm1 = MARSS(dat, inits=inits.list, model=mod.list)

Success! abstol and log-log tests passed at 115 iterations.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Estimation converged in 115 iterations.

Log-likelihood: -40.03813

AIC: 90.07627 AICc: 91.74293

Estimate

R.r 0.15708

Q.q.alpha 0.11264

Q.q.beta 0.00564

x0.X1 -3.34023

x0.X2 -0.05388

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

Notice that the MARSS output does not list any estimates of the regression
parameters themselves. Why not? Remember that in a DLM the matrix of
states (x) contains the estimates of the regression parameters (θ). Therefore,
we need to look in dlm1$states for the MLEs of the regression parameters, and
in dlm1$states.se for their standard errors.

Time series of the estimated intercept and slope are shown in Figure 2.
It appears as though the intercept is much more dynamic than the slope, as
indicated by a much larger estimate of process variance for the former (Q.q1).
In fact, although the effect of April upwelling appears to be increasing over time,
it doesn’t really become important as an explanatory variable until about 1990
when the approximate 95% confidence interval for the slope no longer overlaps
zero.

3 Forecasting with a univariate DLM

Scheuerell & Williams (2005) were interested in how well upwelling could be
used to actually forecast expected survival of salmon, so let’s look at how well

5

−
6.

0
−

4.
0

α t

−
0.

2
0.

4
1.

0

β t

1965 1970 1975 1980 1985 1990 1995 2000 2005

Year of ocean entry

Figure 2: Time series of estimated mean states (thick lines) for the in-
tercept (top) and slope (bottom) parameters from the univariate DLM
specified by Eqns 5–8. Thin lines denote the mean ± 2 standard devia-
tions.

our model does in that context. To do so, we need the predictive distributions
for the regression parameters and observation.

Beginning with our definition for the distribution of the parameters at time
t = 0, θ0 ∼ MVN(π0,Λ0) in Eqn 8, we write

θt−1|y1:t−1 ∼ MVN(πt−1,Λt−1) (10)

to indicate the distribution of θ at time t− 1 conditioned on the observed data
through time t−1 (i.e., y1:t−1). Then, we can write the one-step ahead predictive
distribution for θt given y1:t−1 as

θt|y1:t−1 ∼ MVN(ηt,Φt), where

ηt = Gtπt−1, and (11)

Φt = GtΛt−1G
>
t + Q.

Consequently, the one-step ahead predictive distribution for the observation at
time t given y1:t−1 is

yt|y1:t−1 ∼ N(ζt,Ψt), where

ζt = Ftηt, and (12)

Ψt = FtΦtF
>
t + R.

6

3.1 Forecasting a univariate DLM with MARSS

Working from Eqn 12, we can now use MARSS to compute the expected value of
the forecast at time t (E[yt|y1:t−1] = ζt), and its variance (Var[yt|y1:t−1] = Ψt).
For the expectation, we need Ftηt. Recall that Ft is our 1 × m matrix of
explanatory variables at time t (Ft is called Zt in MARSS notation). The one-
step ahead forecasts of the parameters at time t (ηt) are calculated as part of
the Kalman filter algorithm—they are termed x̃t−1t in MARSS notation and
stored as 'xtt1' in the list produced by the MARSSkfss() function.

get list of Kalman filter output

kf.out = MARSSkfss(dlm1)

forecasts of regr parameters; 2xT matrix

eta = kf.out$xtt1

ts of E(forecasts)

fore.mean = vector()

for(t in 1:TT) {

fore.mean[t] = Z[,,t] %*% eta[,t,drop=F]

}

For the variance of the forecasts, we need FtΦtF
>
t + R. As with the mean,

Ft ≡ Zt. The variances of the one-step ahead forecasts of the parameters at
time t (Φt) are also calculated as part of the Kalman filter algorithm—they are
stored as 'Vtt1' in the list produced by the MARSSkfss() function. Lastly, the
observation variance R is part of the standard MARSS output.

variance of regr parameters; 1x2xT array

Phi = kf.out$Vtt1

obs variance; 1x1 matrix

R.est = coef(dlm1, type="matrix")$R

ts of Var(forecasts)

fore.var = vector()

for(t in 1:TT) {

tZ = matrix(Z[,,t],m,1) ## transpose of Z

fore.var[t] = Z[,,t] %*% Phi[,,t] %*% tZ + R.est

}

Plots of the model mean forecasts with their estimated uncertainty are shown
in Figure 3. Nearly all of the observed values fell within the approximate predic-
tion interval. Notice that we have a forecasted value for the first year of the time
series (1964), which may seem at odds with our notion of forecasting at time t
based on data available only through time t− 1. In this case, however, MARSS
is actually estimating the states at t = 0 (θ0), which allows us to compute a
forecast for the first time point.

Although our model forecasts look reasonable in logit-space, it is worthwhile
to examine how well they look when the survival data and forecasts are back-
transformed onto the interval [0,1] (Figure 4). In that case, the accuracy does
not seem to be affected, but the precision appears much worse, especially during

7

−
8

−
6

−
4

−
2

Lo
gi

t(
s)

1965 1970 1975 1980 1985 1990 1995 2000 2005

Year of ocean entry

Figure 3: Time series of logit-transformed survival data (blue dots) and
model mean forecasts (thick line). Thin lines denote the approximate 95%
prediction intervals.

the early and late portions of the time series when survival is changing rapidly.

0.
00

0.
06

0.
12

S
ur

vi
va

l

1965 1970 1975 1980 1985 1990 1995 2000 2005

Year of ocean entry

Figure 4: Time series of survival data (blue dots) and model mean fore-
casts (thick line). Thin lines denote the approximate 95% prediction in-
tervals.

8

3.2 DLM forecast diagnostics

As with other time series models, evaluation of a DLM should include some
model diagnostics. In a forecasting context, we are often interested in the fore-
cast errors, which are simply the observed data minus the forecasts (et = yt−ζt).
In particular, the following assumptions should hold true for et:

1) et ∼ N(0, σ2);

2) cov(et, et−k) = 0.

In the literature on state-space models, the set of et are commonly referred to
as“innovations”. MARSS() calculates the innovations as part of the Kalman filter
algorithm—they are stored as 'Innov' in the list produced by the MARSSkfss()
function.

forecast errors

innov = kf.out$Innov

Let’s see if our innovations meet the model assumptions. Beginning with (1),
we can use a Q-Q plot to see whether the innovations are normally distributed
with a mean of zero. We’ll use the qqnorm() function to plot the quantiles of
the innovations on the y-axis versus the theoretical quantiles from a Normal
distribution on the x-axis. If the 2 distributions are similar, the points should
fall on the line defined by y = x.

Q-Q plot of innovations

qqnorm(t(innov), main="", pch=16, col="blue")

add y=x line for easier interpretation

qqline(t(innov))

−2 −1 0 1 2

−
1.

5
−

0.
5

0.
5

1.
5

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 5: Q-Q plot of the forecast errors (innovations) for the DLM
specified in Eqns 5–8.

The Q-Q plot (Figure 5) indicates that the innovations appear to be more-
or-less normally distributed (i.e., most points fall on the line). Furthermore, it

9

looks like the mean of the innovations is about 0, but we should use a more
reliable test than simple visual inspection. We can formally test whether the
mean of the innovations is significantly different from 0 by using a one-sample
t-test. based on a null hypothesis of E(et) = 0. To do so, we will use the
function t.test() and base our inference on a significance value of α = 0.05.

p-value for t-test of H0: E(innov) = 0

t.test(t(innov), mu=0)$p.value

[1] 0.4840901

The p-value >> 0.05 so we cannot reject the null hypothesis that E(et) = 0.
Moving on to assumption (2), we can use the sample autocorrelation function

(ACF) to examine whether the innovations covary with a time-lagged version of
themselves. Using the acf() function, we can compute and plot the correlations
of et and et−k for various values of k. Assumption (2) will be met if none
of the correlation coefficients exceed the 95% confidence intervals defined by
± z0.975/

√
n.

plot ACF of innovations

acf(t(innov), lag.max=10)

0 2 4 6 8 10

−
0.

2
0.

2
0.

6
1.

0

Lag

A
C

F

Figure 6: Autocorrelation plot of the forecast errors (innovations) for
the DLM specified in Eqns 5–8. Horizontal blue lines define the upper and
lower 95% confidence intervals.

The ACF plot (Figure 6) shows no significant autocorrelation in the innovations
at lags 1–10, so it looks like both of our model assumptions have indeed been
met.

10

4 Homework problems

For the homework this week we will use a DLM to examine some of the time-
varying properties of the spawner-recruit relationship for Pacific salmon. Much
work has been done on this topic, particularly by Randall Peterman and his
students and post-docs at Simon Fraser University. To do so, researchers com-
monly use a Ricker model because of its relatively simple form, such that the
number of recruits (offspring) born in year t (Rt) from the number of spawners
(parents) (St) is

Rt = aSte
−bS+vt . (13)

The parameter a determines the maximum reproductive rate in the absence of
any density-dependent effects (the slope of the curve at the origin), b is the
strength of density dependence, and vt ∼ N(0, σ). In practice, the model is
typically log-transformed so as to make it linear with respect to the predictor
variable St, such that

log(Rt) = log(a) + log(St)− bSt + vt

log(Rt)− log(St) = log(a)− bSt + vt

log(Rt/St) = log(a)− bSt + vt.

(14)

Substituting yt = log(Rt/St), xt = St, and α = log(a) yields a simple linear
regression model with intercept α and slope b.

Unfortunately, however, residuals from this simple model typically show
high-autocorrelation due to common environmental conditions that affect over-
laping generations. Therefore, to correct for this and allow for an index of stock
productivity that controls for any density-dependent effects, the model may be
re-witten as

log(Rt/St) = αt − bSt + vt,

αt = αt−1 + wt,
(15)

and wt ∼ N(0, q). By treating the brood-year specific productivity as a random
walk, we allow it to vary, but in an autocorrelated manner so that consecutive
years are not independent from one another.

More recently, interest has grown in using covariates (e.g., sea-surface tem-
perature) to explain the interannual variability in productivity. In that case, we
can can write the model as

log(Rt/St) = α+ δtXt − bSt + vt. (16)

In this case we are estimating some base-level productivity (α) plus the time-
varying effect of some covariate Xt (δt).

11

4.1 Spawner-recruit data

The data come from a large public database begun by Ransom Myers many
years ago. If you are interested, you can find lots of time series of spawning-
stock, recruitment, and harvest for a variety of fishes around the globe. Here is
the website:

http://ram.biology.dal.ca/~myers/about_site.html

For this exercise, we will use spawner-recruit data for sockeye salmon (Oncorhynchus
nerka) from the Kvichak River in SW Alaska that span the years 1952-1989. In
addition, we’ll examine the potential effects of the Pacific Decadal Oscillation
(PDO) during the salmon’s first year in the ocean, which is widely believed to
be a ”bottleneck” to survival.

Here are the data:

get S-R data; object is 'SRdata"
file cols are:

1: brood yr (brood.yr)

2: number of spawners (Sp)

3: number of recruits (Rec)

4: PDO during first summer at sea (PDO.t2)

5: PDO during first winter at sea (PDO.t3)

load("KvichakSockeye.RData")

head of data file

head(SRdata)

brood.yr Sp Rec PDO.t2 PDO.t3

1 1952 5970 17310 -0.61 -0.61

2 1953 320 520 -1.48 -2.66

3 1954 240 750 -2.05 -1.26

4 1955 250 1280 0.01 0.11

5 1956 9443 39036 0.86 0.37

6 1957 2843 4091 -0.25 0.29

4.2 Questions

Use the information above to answer the following questions. Note that if any
model is not converging, then you will need to increase the maxit parameter in
the control argument/list that gets passed to MARSS. For example, you might
try control=list(maxit=2000).

1. Begin by fitting a reduced form of Equation 15 that includes only a time-
varying level (αt) and observation error (vt). That is,

log(Rt) = αt + log(St) + vt

log(Rt/St) = αt + vt
(17)

12

This model assumes no density-dependent survival in that the number of
recruits is an ascending function of spawners. Plot the ts of αt and note
the AICc for this model. Also plot appropriate model diagnostics.

2. Fit the full model specified by Equation 15. For this model, obtain the
time series of αt, which is an estimate of the stock productivity in the
absence of density-dependent effects. How do these estimates of produc-
tivity compare to those from the previous question? Plot the ts of αt and
note the AICc for this model. Also plot appropriate model diagnostics.
(Hint: If you don’t want a parameter to vary with time, what does that
say about its process variance?)

3. Fit the model specified by Equation 16 with the summer PDO index as
the covariate (PDO.t2). What is the mean level of productivity? Plot the
ts of δt and note the AICc for this model. Also plot appropriate model
diagnostics.

4. Fit the model specified by Equation 16 with the winter PDO index as
the covariate (PDO.t3). What is the mean level of productivity? Plot the
ts of δt and note the AICc for this model. Also plot appropriate model
diagnostics.

5. Based on AICc, which of the models above is the most parsimonius? Is
it well behaved (i.e., are the model assumptions met)? Plot the model
forecasts for the best model. Is this a good forecast model?

13

