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Fitting multivariate state-space models
without covariates

This lab show you how to fit some multivariate state-space models using
MARSS(). We will start with an example using model selection to test dif-
ferent population structures in west coast harbor seals and use examples of
multivariate state-space models with covariates using plankton data. See ?
has fuller versions of these examples.

1.1 Estimating population growth rate from harbor seals
counts

In this example, we will use multivariate state-space models to combine sur-
veys from four survey regions to estimate the average long-term population
growth rate and the year-to-year variability in that population growth rate.

We have five regions (or sites) where harbor seals were censused from 1978-
1999 while hauled out of land1. During the period of this dataset, harbor seals
were recovering steadily after having been reduced to low levels by hunting
prior to protection. We will assume that the underlying population process is
a stochastic exponential growth process with mean rates of increase that were
not changing through 1978-1999.

The survey methodologies were consistent throughout the 20 years of the
data but we do not know what fraction of the population that each region rep-
resents nor do we know the observation-error variance for each region. Given
differences between the numbers of haul-outs in each region, the observation
errors may be quite different. The regions have had different levels of sam-
pling; the best sampled region has only 4 years missing while the worst has
over half the years missing (Figure 1.1).

1 Jeffries et al. 2003. Trends and status of harbor seals in Washington State: 1978-
1999. Journal of Wildlife Management 67(1):208–219
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Fig. 1.1. Plot of the of the count data from the five harbor seal regions (Jeffries et
al. 2003). The numbers on each line denote the different regions: 1) Strait of Juan
de Fuca (SJF), 2) San Juan Islands (SJI), 2) Eastern Bays (EBays), 4) Puget Sound
(PSnd), and 5) Hood Canal (HC). Each region is an index of the total harbor seal
population in each region.

1.1.1 Load the harbor seal data

The harbor seal data are included in the MARSS package as matrix with years
in column 1 and the logged counts in the other columns. Let’s look at the first
few years of data:

print(harborSealWA[1:8,], digits=3)

Year SJF SJI EBays PSnd HC

[1,] 1978 6.03 6.75 6.63 5.82 6.6

[2,] 1979 NA NA NA NA NA

[3,] 1980 NA NA NA NA NA

[4,] 1981 NA NA NA NA NA

[5,] 1982 NA NA NA NA NA

[6,] 1983 6.78 7.43 7.21 NA NA

[7,] 1984 6.93 7.74 7.45 NA NA

[8,] 1985 7.16 7.53 7.26 6.60 NA
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We are going to leave out Hood Canal (HC) since that region is somewhat
isolated from the others and experiencing very different conditions due to
hypoxic events and periodic intense killer whale predation. We will set up the
data as follows:

years = harborSealWA[,"Year"]

dat= harborSealWA[,!(colnames(harborSealWA) %in% c("Year", "HC"))]

dat=t(dat) #transpose to have years across columns

colnames(dat) = years

n = nrow(dat)-1

1.1.2 A single well-mixed population

When we are looking at data over a large geographic region, we might make the
assumption that the different census regions are measuring a single population
if we think animals are moving sufficiently such that the whole area (multiple
regions together) is “well-mixed”. We write a model of the total population
abundance for this case as:

nt = exp(u + wt)nt−1, (1.1)

where nt is the total count in year t, u is the mean population growth rate,
and wt is the deviation from that average in year t. We then take the log of
both sides and write the model in log space:

xt = xt−1 + u + wt , where wt ∼ N(0,q) (1.2)

xt = lognt . When there is one effective population, there is one x, therefore xt
is a 1× 1 matrix. There is one population growth rate (u) and there is one
process variance (q). Thus u and Q are 1×1 matrices.

The observation process

We assume that all four regional time series are observations of this one pop-
ulation trajectory but they are scaled up or down relative to that trajectory.
In effect, we think of each regional survey as an index of the total population.
With this model, we do not think the regions represent independent subpop-
ulations but rather independent observations of one population. Our model
for the data, yt = Zxt + a + vt , is written as:

y1
y2
y3
y4


t

=


1
1
1
1

xt +


0
a2
a3
a4

+


v1
v2
v3
v4


t

(1.3)

Each yi is the time series for a different region. The a’s are the bias between
the regional sample and the total population. Z specifies which observation
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time series, yi,1:T , is associated with which population trajectory, x j,1:T . In this
case, Z is a matrix with 1 column since each region is an observation of the
one population trajectory.

We allow that each region could have a unique observation variance and
that the observation errors are independent between regions. We assume that
the observations errors on log(counts) are normal and thus the errors on
(counts) are log-normal. The assumption of normality is not unreasonable
since these regional counts are the sum of counts across multiple haul-outs.
We specify independent observation errors with different variances by speci-
fying that v ∼ MVN(0,R)), where

R =


r1 0 0 0
0 r2 0 0
0 0 r3 0
0 0 0 r4

 (1.4)

This is a diagonal matrix with unequal variances. The shortcut for this struc-
ture in MARSS() is "diagonal and unequal".

Fitting the model

To fit with MARSS(), we write the model in this form:

xt = Bxt−1 + u + wt , where wt ∼ MVN(0,Q)

x0 = µ

yt = Zxt + a + vt , where vt ∼ MVN(0,R)

(1.5)

Set up the model list for MARSS():

mod.list.0 = list(

B=matrix(1),

U=matrix("u"),

Q=matrix("q"),

Z=matrix(1,4,1),

A="scaling",

R="diagonal and unequal",

x0=matrix("mu"),

tinitx=0 )

and fit:

fit.0 = MARSS(dat, model=mod.list.0)

Success! abstol and log-log tests passed at 32 iterations.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.
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MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Estimation converged in 32 iterations.

Log-likelihood: 21.62931

AIC: -23.25863 AICc: -19.02786

Estimate

A.SJI 0.79583

A.EBays 0.27528

A.PSnd -0.54335

R.(SJF,SJF) 0.02883

R.(SJI,SJI) 0.03063

R.(EBays,EBays) 0.01661

R.(PSnd,PSnd) 0.01168

U.u 0.05537

Q.q 0.00642

x0.mu 6.22810

Initial states (x0) defined at t=0

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.

Model residuals

The model fits fine but look at the model residuals (Figure 1.2). They have
problems.

par(mfrow=c(2,2))

resids=residuals(fit.0)

for(i in 1:4){

plot(resids$model.residuals[i,],ylab="model residuals", xlab="")

abline(h=0)

title(rownames(dat)[i])

}
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Fig. 1.2. The model residuals for the first model. SJI and EBays do not look good.
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1.1.3 Four subpopulations with temporally correlated errors

So the model for one well-mixed population was not very good. Another rea-
sonable assumption is that the different census regions are measuring different
subpopulations but that the population growth rates are correlated (good and
bad year coincide). We write a model of the log subpopulation abundances
for this case as: 

x1
x2
x3
x4


t

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




x1
x2
x3
x4


t−1

+


u
u
u
u

+


w
w
w
w


t

where wt ∼ MVN

0,


q c c c
c q c c
c c q c
c c c q





x1
x2
x3
x4


0

=


µ1
µ2
µ3
µ4


t

=

(1.6)

The Q matrix is saying that the process variance (variance in year-to-year
population growth rates) is the same between regions and the covariance in
year-to-year population growth rates is also the same across regions.

1.1.4 The observation process

Now each survey is an observation of a different x:
y1
y2
y3
y4


t

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




x1
x2
x3
x4


t

+


0
0
0
0

+


v1
v2
v3
v4


t

(1.7)

No a’s can be estimated since we do not have multiple observations of a given
x time series. Our R matrix doesn’t change; the observation errors are still
assumed to the independent with different variances.

1.1.5 Fitting the model

Set up the model list for MARSS():

mod.list.1 = list(

B="identity",

U="equal",

Q="equalvarcov",
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Z="identity",

A="scaling",

R="diagonal and unequal",

x0="unequal",

tinitx=0 )

and fit:

fit.1 = MARSS(dat, model=mod.list.1)

Results are not shown, but here are the AICc. This model is much better:

c(fit.0$AICc, fit.1$AICc)

[1] -19.02786 -41.00511

Look at the model residuals (Figure 1.3). They are also much better.
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Fig. 1.3. The model residuals for the second model.

Figure 1.4 shows the estimated states for each region using this code:

par(mfrow=c(2,2))

for(i in 1:4){
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plot(years,fit.1$states[i,],ylab="log subpopulation estimate", xlab="", type="l")

lines(years,fit.1$states[i,]-1.96*fit.1$states.se[i,],type="l",lwd=1,lty=2,col="red")

lines(years,fit.1$states[i,]+1.96*fit.1$states.se[i,],type="l",lwd=1,lty=2,col="red")

title(rownames(dat)[i])

}
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Fig. 1.4. Plot of the estimate of log harbor seals in each region. The 95% confidence
intervals on the population estimates are the dashed lines. These are not the confi-
dence intervals on the observations, and the observations (the numbers) will not fall
between the confidence interval lines.

1.2 Using MARSS models to study spatial structure

For this example, we will use MARSS models to test hypotheses about the pop-
ulation structure of harbor seals on the west coast. The dataset harborSeal

is a 29-year dataset of abundance indices for each of 12 regions between 1975-
2004 (Figure 1.5).

We start by setting up our data matrix. We will leave off Hood Canal
(column 8).
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years = harborSeal[,"Year"]

#leave off Hood Canal data for now

good = !(colnames(harborSeal)%in%c("Year","HoodCanal"))

sealData = t(harborSeal[,good])
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Fig. 1.5. Plot of log counts at each survey region in the harborSeal dataset. Each
region is an index of the harbor seal abundance in that region.

1.2.1 Basic form of the MARSS model

The mathematical form of the model we will use is

xt = xt−1 + u + wt where wt ∼ MVN(0,Q)

x0 = µ

yt = Zxt + a + vt where vt ∼ MVN(0,R)

(1.8)

B is left off but it is an identity matrix. For this section, we are concerned
with evaluating the support for different numbers of x’s (subpopulations) and
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different Z (how survey regions map onto these subpopulations). We will as-
sume correlated process errors with the same magnitude of process variance
and covariance. We will assume independed observations errors with equal
variances at each site. We can do unequal but it takes a long time to fit so for
this example, the observation variances are set equal.

1.2.2 Hypotheses regarding spatial structure

We will evaluate the data support for the following hypotheses about the
population structure:

H1: stock 3 subpopulations defined by stock
H2: coast+PS 2 subpopulations defined by coastal versus WA inland
H3: N+S 2 subpopulations defined by north and south split in the middle of

Oregon
H4: NC+strait+PS+SC 4 subpopulations defined by N coastal, S coastal,

SJF+Georgia Strait, and Puget Sound
H5: panmictic All regions are part of the same panmictic population
H6: site Each of the 11 regions is a subpopulation

These hypotheses translate to these Z matrices (H6 not shown; it is an
identity matrix).

H1 H2 H4 H5
Z Z Z Z

wa.or ps ca coast ps nc is ps sc pan
Coastal Estuaries 1 0 0 1 0 1 0 0 0 1
Olympic Peninsula 1 0 0 1 0 1 0 0 0 1
Str. Juan de Fuca 0 1 0 0 1 0 1 0 0 1
San Juan Islands 0 1 0 0 1 0 1 0 0 1

Eastern Bays 0 1 0 0 1 0 0 1 0 1
Puget Sound 0 1 0 0 1 0 0 1 0 1
CA.Mainland 0 0 1 1 0 0 0 0 1 1

CA.ChannelIslands 0 0 1 1 0 0 0 0 1 1
OR North Coast 1 0 0 1 0 1 0 0 0 1
OR South Coast 1 0 0 1 0 0 0 0 1 1
Georgia Strait 0 1 0 0 1 0 1 0 0 1

To tell MARSS() the form of Z, we construct the same matrix in R. For
example, for hypotheses 1, we can write:

Z.model=matrix(0,11,3)

Z.model[c(1,2,9,10),1]=1 #which elements in col 1 are 1

Z.model[c(3:6,11),2]=1 #which elements in col 2 are 1

Z.model[7:8,3]=1 #which elements in col 3 are 1
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Or we can use a short-cut by specifying Z as a factor that has name of the
subpopulation associated with each row in y. For hypothesis 1, this is

Z1=factor(c("wa.or","wa.or",rep("ps",4),"ca","ca","wa.or","wa.or","bc"))

Notice it is 11 elements in length; one element for each row of data.

1.2.3 Set up the model for MARSS

mod.list = list(

B = "identity",

U = "unequal",

Q = "equalvarcov",

Z = "placeholder",

A = "scaling",

R = "diagonal and equal",

x0 = "unequal",

tinitx = 0 )

Z.models = list(

H1=factor(c("wa.or","wa.or",rep("ps",4),"ca","ca","wa.or","wa.or","bc")),

H2=factor(c(rep("coast",2),rep("ps",4),rep("coast",4),"ps")),

H3=factor(c(rep("N",6),"S","S","N","S","N")),

H4=factor(c("nc","nc","is","is","ps","ps","sc","sc","nc","sc","is")),

H5=factor(rep("pan",11)),

H6=factor(1:11) #site

)

names(Z.models)=

c("stock","coast+PS","N+S","NC+strait+PS+SC","panmictic","site")

1.2.4 Fit the models

We loop through the models, fit and store the results:

out.tab=NULL

fits=list()

for(i in 1:length(Z.models)){

mod.list$Z = Z.models[[i]]

fit = MARSS(sealData, model=mod.list,

silent=TRUE, control=list(maxit=1000))

out=data.frame(H=names(Z.models)[i],

logLik=fit$logLik, AICc=fit$AICc, num.param=fit$num.params,

m=length(unique(Z.models[[i]])),

num.iter=fit$numIter, converged=!fit$convergence)

out.tab=rbind(out.tab,out)

fits=c(fits,list(fit))

}
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1.2.5 Summarize the data support

We will use AICc and AIC weights to summarize the data support for the
different hypotheses. First we will sort the fits based on AICc:

min.AICc=order(out.tab$AICc)

out.tab.1=out.tab[min.AICc,]

Next we add the ∆AICc values by subtracting the lowest AICc:

out.tab.1=cbind(out.tab.1,

delta.AICc=out.tab.1$AICc-out.tab.1$AICc[1])

Relative likelihood is defined as exp(−∆AICc/2).

out.tab.1=cbind(out.tab.1,

rel.like=exp(-1*out.tab.1$delta.AICc/2))

The AIC weight for a model is its relative likelihood divided by the sum of all
the relative likelihoods.

out.tab.1=cbind(out.tab.1,

AIC.weight = out.tab.1$rel.like/sum(out.tab.1$rel.like))

Let’s look at the model weights (out.tab.1):

H delta.AICc AIC.weight converged

NC+strait+PS+SC 0.00 0.979 TRUE

site 7.65 0.021 TRUE

N+S 36.97 0.000 TRUE

stock 37.82 0.000 TRUE

coast+PS 48.78 0.000 TRUE

panmictic 71.67 0.000 TRUE
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