4

Introduction to Bayesian Time-Series Analysis
using JAGS

In this lab, we’ll work through using Bayesian methods to estimate parame-
ters in time series models using JAGS. There’s a variety of software tools to
do this. R has a number of packages available on the TimeSeries task view,

http://cran.r-project.org/web/views/TimeSeries.html

Software to implement more complicated models is also available, and many
of you are probably familiar with these options (AD Model Builder and Tem-
plate Model Builder, WinBUGS, OpenBUGS, JAGS, to name a few). We'll
be using JAGS because (1) it’s platform independent, (2) most of the glitches
have been worked out, and (3) it’s easy to use via R. After updating to the
latest version of R, install JAGS for your operating platform here:

http://sourceforge.net/projects/mcmc-jags/files/

Click on *JAGS’, then the most recent folder, then the platform of your ma-
chine. With JAGS installed, open up R (or RStudio) and install the coda and
R2jags packages.

require(coda)
require(R2jags)

4.1 The dataset

For data for this lab, we’ll include a dataset on airquality in New York. We’ll
load the data and create a couple new variables for future use. For the majority
of our models, we’re going to treat "Wind’ as the response variable for our time
series models.

data(airquality)
Wind = airquality$Wind # wind speed

http://cran.r-project.org/web/views/TimeSeries.html
http://sourceforge.net/projects/mcmc-jags/files/

76 4 Intro to JAGS

Temp = airquality$Temp # air temperature
N = dim(airquality)[1] # number of data points

4.2 Linear regression with no covariates

We'll start with the simplest time series model possible: linear regression with
only an intercept, so that the predicted values of all observations are the
same. There are several ways we can write this equation. First, the predicted
values can be written as E[y;] = u. Assuming that the residuals are normally
distributed, the model linking our predictions to observed data is written as

e =u+ep,e ~ N(0,6%) (4.1)

An equivalent way to think about this model is that instead of the residuals
as normally distributed with mean zero, we can think of the data y as being
normally distributed with a mean of the intercept, and the same residual
standard deviation:

y~ N(E[y],0%) (4.2)

Remember that in linear regression models, the residual error is interpreted
as independent and identically distributed observation error.

To run the JAGS model, we’ll need to start by writing the model in JAGS
notation. For our linear regression model, one way to construct the model is

T
1. LINEAR REGRESSION with no covariates
no covariates, so intercept only. The parameters are
mean 'mu' and precision/variance parameter 'tau.obs'
T
model.loc="1m_intercept.txt" # name of the txt file
jagsscript = cat ("
model {
priors on parameters
mu ~ dnorm(0, 0.01); # mean = 0, sd = 1/sqrt(0.01)
tau.obs ~ dgamma(0.001,0.001); # This is inverse gamma
sd.obs <- 1/sqrt(tau.obs); # sd is treated as derived parameter

for(i in 1:N) {
Y[i] ~ dnorm(mu, tau.obs);
}
}
" file=model.loc)

A couple things to notice: JAGS is not vectorized so we need to use for loops
(instead of matrix multiplication) and the dnorm notation means that we

7

assume that value (on the left) is normally distributed around a particular
mean with a particular precision (1 over the square root of the variance).

The model can briefly be summarized as follows: there are 2 parameters
in the model (the mean and variance of the observation error). JAGS is a bit
funny in that instead of giving a normal distribution the standard deviation
or variance, you pass in the precision (1/variance), so our prior on 'mu’ is
pretty vague. The precision receives a gamma prior, which is equivalent to
the variance receiving an inverse gamma prior (fairly common for standard
Bayesian regression models). We will treat the standard deviation as derived
(if we know the variance or precision, which we’re estimating, we automatically
know the standard deviation). Finally, we write a model for the data "Y’. Again
we use the ’dnorm’ distribution to say that the data is normally distributed
(equivalent to our likelihood).

The function from the R2jags package that we actually use to run the
model is 'jags’. There’s a parallel version of the function called ’jags.parallel’
which is useful for larger, more complex models. The details of both can be
found with:

7?jags
or
7jags.parallel

To actually run the model, we need to create several new objects, repre-
senting (1) a list of data that we’ll pass to JAGS, (2) a vector of parameters
that we want to monitor in JAGS and have returned back to R, and (3) the
name of our txt file that contains the JAGS model we wrote above. With
those three things, we can call the jags’ function, and

jags.data = list("Y"=Wind, "N"=N) # named list of inputs

jags.params=c("sd.obs", "mu") # parameters to be monitored

mod_lm_intercept = jags(jags.data, parameters.to.save=jags.params,
model.file=model.loc, n.chains = 3, n.burnin=5000,
n.thin=1, n.iter=10000, DIC=TRUE)

Notice that the jags() function contains a number of other important
arguments. In general, larger is better for all arguments: we want to run
multiple MCMC chains (maybe 3 or more), and have a burn-in of at least
5000. The total number of samples after the burn-in period is n.iter-n.burnin,
which in this case is 5000 samples. Because we’re doing this with 3 MCMC
chains, and the thinning rate = 1 (meaning we're saving every sample), we’ll
retain a total of 1500 posterior samples for each parameter.

The saved object storing our model diagnostics can be accessed directly,
and includes some useful summary output,

mod_Im_intercept

78 4 Intro to JAGS

Inference for Bugs model at "lm_intercept.txt", fit using jags,
3 chains, each with 10000 iterations (first 5000 discarded)
n.sims = 15000 iterations saved

mu.vect sd.vect 2.5% 25% 50% 75%
mu 9.950 0.29 9.383 9.758 9.947 10.145
sd.obs 3.540 0.23 3.164 3.395 3.529 3.672

deviance 820.617 3.61 818.593 819.138 819.940 821.357
97.5% Rhat n.eff

mu 10.513 1.001 15000

sd.obs 3.967 1.001 15000

deviance 826.066 1.003 15000

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)
pD = 6.5 and DIC = 827.1
DIC is an estimate of expected predictive error (lower deviance is better).

The last 2 columns in the summary contain Rhat (which we want to be
close to 1.0), and neff (the effective sample size of each set of posterior draws).
To examine the output more closely, we can pull all of the results directly into
R,

attach. jags (mod_lm_intercept)

Attaching the R2jags object allows us to work with the named parame-
ters directly in R. For example, we could make a histogram of the posterior
distributions of the parameters mu and sd.obs with the following code,

Now we can make plots of posterior values

par (mfrow = c(2,1))

hist(mu,40,col="grey",xlab="Mean" ,main="")
hist(sd.obs,40,col="grey",xlab=expression(sigmalobs]),main="")

Finally, we can run some useful diagnostics from the coda package on this
model output. We’ve written a small function to make the creation of mcmc
lists (an argument required for many of the diagnostics). The function

createMcmcList = function(jagsmodel) {

McmcArray = as.array(jagsmodel$BUGSoutput$sims.array)

McmcList = vector("list",length=dim(McmcArray) [2])

for(i in 1:length(McmcList)) McmcList[[i]] = as.mcmc(McmcArrayl[,i,])
McmcList = mcmc.list (McmcList)

return (McmcList)

}

79

1000

Frequency
0 400

9.0 9.5 10.0 10.5 11.0

Mean

Frequency
0 2000 5000

Oobs

Fig. 4.1.

Creating the MCMC list preserves the random samples generated from
each chain and allows you to extract the samples for a given parameter (such
as mu) from any chain you want. To extract mu from the first chain, for
example, you could use the following code. Because createMcmcList returns
a list of meme objects, we can summarize and plot these directly. Figure [4.2
shows the plot from plot (myList[[1]]).

myList = createMcmcList (mod_lm_intercept)
summary (myList [[1]])

Iterations = 1:5000

Thinning interval =1

Number of chains =1

Sample size per chain = 5000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
deviance 820.640 3.8203 0.054027 0.055212

80 4 Intro to JAGS

mu 9.954 0.2942 0.004160 0.004160
sd.obs 3.540 0.2325 0.003288 0.003288
2. Quantiles for each variable:

2.5Y% 25% 50% 75% 97.5%
deviance 818.593 819.120 819.903 821.38 826.524
mu 9.374 9.763 9.949 10.15 10.535
sd.obs 3.163 3.397 3.528 3.67 3.958
plot(myList[[1]])

Trace of deviance

Density of deviance

3
Ef 8
4 s |
Q - ~
8 3]
4 s]
Q ~
3 7] " - 8]
T T T T T o T T T T T
0 1000 2000 3000 4000 5000 850 900 950 1000 1050
Iterations N =5000 Bandwidth = 0.3256
Trace of mu Density of mu
e
d ~
=} -
S ©
3 S 1
o]
; o
b T T T T T T © T T T T T
0 1000 2000 3000 4000 5000 90 95 100 105 110
Iterations N =5000 Bandwidth = 0.05541
Trace of sd.obs Density of sd.obs
o
o~
«© - o
e
©
< — o |
T T T T T T © T T T T
0 1000 2000 3000 4000 5000 4 6 8 10
Iterations N =5000 Bandwidth = 0.03941
Fig. 4.2.

For more quantitative diagnostics of MCMC convergence, we can rely on
the coda package in R. There are several useful statistics available, including
the Gelman-Rubin diagnostic (for one or several chains), autocorrelation di-
agnostics (similar to the ACF you calculated above), the Geweke diagnostic,
and Heidelberger-Welch test of stationarity.

81

Run the majority of the diagnostics that CODA() offers

library(coda)

gelmanDiags = gelman.diag(createMcmcList (mod_lm_intercept),multivariate=F)
autocorDiags = autocorr.diag(createMcmcList (mod_lm_intercept))

gewekeDiags = geweke.diag(createMcmcList (mod_lm_intercept))

heidelDiags = heidel.diag(createMcmcList (mod_lm_intercept))

4.3 Regression with autocorrelated errors

In our first model, the errors were independent in time. We're going to modify
this to model autocorrelated errors. Autocorrelated errors are widely used in
ecology and other fields — for a greater discussion, see Morris and Doak (2002)
Quantitative Conservation Biology. To make the deviations autocorrelated,
we start by defining the deviation in the first time step, e; = Y7 —u. The
expectation of y; in each time step is then written as

Ely] =u+6xer (4.3)

In addition to affecting the expectation, the correlation parameter ¢ also
affects the variance of the errors, so that

o’ =y* (1-¢?) (4.4)

Like in our first model, we assume that the data follows a normal likelihood
(or equivalently that the residuals are normally distributed), y, = E[y,] +¢;, or
yi ~ N(E[y],6?). Thus, it is possible to express the subsequent deviations as
e; =y; — E[y;], or equivalently as e, =y, —u— @+ e,_1. The JAGS script for this
model is:

RR R R AR R R R R AR AR R R R R AR AR R R R R R R AAARRRR R #H#
2. MODIFY THE ERRORS TO BE AUTOCORRELATED
no covariates, so intercept only.
B e B e i
model.loc=("lmcor_intercept.txt")
jagsscript = cat ("
model {
priors on parameters
mu ~ dnorm(0, 0.01);
tau.obs ~ dgamma(0.001,0.001);
sd.obs <- 1/sqrt(tau.obs);
phi ~ dunif(-1,1);
tau.cor <- tau.obs * (1-phi*phi); # Var = sigma2 * (1-rho~2)

epsilon[1] <- Y[1] - mu;
predY[1] <- mu; # initial value

82 4 Intro to JAGS

for(i in 2:N) {
predY[i] <- mu + phi * epsilon[i-1];
Y[i] ~ dnorm(predY[i], tau.cor);
epsilon([i] <- (Y[i] - mu) - phi*epsilon[i-1];
}
}
" file=model.loc)

Notice several subtle changes from the simpler first model: (1) we’re esti-
mating the autocorrelation parameter ¢, which is assigned a Uniform(-1, 1)
prior, (2) we model the residual variance as a function of the autocorrelation,
and (3) we allow the autocorrelation to affect the predicted values ’predY’.
One other change we can make is to add 'predY’ to the list of parameters we
want returned to R (because this is a simple model, this is also easy to do in
R given the other parameters).

jags.data = list("Y"=Wind, "N"=N)

jags.params=c("sd.obs", "predY", "mu", "phi")

mod_lmcor_intercept = jags(jags.data, parameters.to.save=jags.params,
model.file=model.loc, n.chains = 3, n.burnin=5000,
n.thin=1, n.iter=10000, DIC=TRUE)

For some models, we may be interested in examining the posterior fits to
data. You can make this plot yourself, but we’ve also put together a simple
function whose arguments are one of our fitted models and the raw data. The
function is:

plotModelOutput = function(jagsmodel, Y) {

attach the model

attach. jags (jagsmodel)

x = seq(1,length(Y))

summaryPredictions = cbind(apply (predY,2,quantile,0.025), apply(predY,2,mean),
apply(predY,2,quantile,0.975))

plot(Y, col="white",ylim=c (min(c(Y,summaryPredictions)) ,max(c(Y,summaryPredictions))),
xlab="",ylab="95), CIs of predictions and data",main=paste("JAGS results:",
jagsmodel$model.file))

polygon(c(x,rev(x)), c(summaryPredictions[,1], rev(summaryPredictions[,3])),
col="grey70",border=NA)

lines (summaryPredictions[,2])

points(Y)

}

and we can use the function to plot the predicted posterior mean with 95%
CIs, as well as the raw data. For example, try

plotModelOutput (mod_lmcor_intercept, Wind)

83

JAGS results: Imcor_intercept.txt

8
©
ﬁLD
S g
CH
[}
2]
c
k=l
s
2
3
5 2
s
o
2
O
X
Yol
[«2)
o

Fig. 4.3. Predicted posterior mean with 95% Cls

4.4 Random walk time series model

All of the previous three models can be interpreted as observation error mod-
els. Switching gears, we can alternatively model error in the state of nature,
creating process error models. A simple process error model that many of you
may have seen before is the random walk model. In this model, the assumption
is that the true state of nature (or latent states) are measured perfectly. Thus,
all uncertainty is originating from process variation (for ecological problems,
this is often interpreted as environmental variation). For this simple model,
we’ll assume that our process of interest (in this case, daily wind speed) ex-
hibits no daily trend, but behaves as a random walk.

Ely]=y-1+e- (4.5)

And the ¢, ~ N(0,6%). Remember back to the autocorrelated model (or
MA (1) models) that we assumed that the errors ¢, followed a random walk.
In contrast, the AR(1) model assumes that the errors are independent, but
that the state of nature follows a random walk. The JAGS random walk model
and R script to run it is below:

84 4 Intro to JAGS

B e
3. AR(1) MODEL WITH NO ESTIMATED AR COEFFICIENT = RANDOM WALK
no covariates. The model is y[t] ~ Normal(y[n-1], sigma) for
we'll call the precision tau.pro
Note too that we have to define predY[1]
g
model.loc=("rw_intercept.txt")
jagsscript = cat ("
model {

mu ~ dnorm(0, 0.01);

tau.pro ~ dgamma(0.001,0.001);

sd.pro <- 1/sqrt(tau.pro);

predY[1] <- mu; # initial value
for(i in 2:N) {
predY[i] <- Y[i-1];
Y[i] ~ dnorm(predY[i], tau.pro);
}
}
" file=model.loc)
jags.data = list("Y"=Wind, "N"=N)
jags.params=c("sd.pro", "predY", "mu")
mod_rw_intercept = jags(jags.data, parameters.to.save=jags.params, model.file=model.loc,
n.chains = 3, n.burnin=5000, n.thin=1, n.iter=10000, DIC=TRUE)

4.5 Autoregressive AR(1) time series models

A variation of the random walk model described previously is the autoregres-
sive time series model of order 1, AR(1). This model introduces a coefficient,
which we’ll call ¢. The parameter ¢ controls the degree to which the random
walk reverts to the mean — when ¢ = 1, the model is identical to the random
walk, but at smaller values, the model will revert back to the mean (which
in this case is zero). Also, ¢ can take on negative values, which we’ll discuss
more in future lectures. The math to describe the AR(1) time series model is:

Ely] = 0*y—1+e1 (4.6)

The JAGS random walk model and R script to run the AR(1) model is
below:

i
4. AR(1) MODEL WITH AND ESTIMATED AR COEFFICIENT

We're introducting a new AR coefficient 'phi', so the model is
ylt] = N(mu + phi*y[n-1], sigma~2)
i g i

85

model.loc=("arl_intercept.txt")
jagsscript = cat("
model {
mu ~ dnorm(0, 0.01);
tau.pro ~ dgamma(0.001,0.001);
sd.pro <- 1/sqrt(tau.pro);
phi ~ dnorm(0, 1);

predY[1] <- Y[1];
for(i in 2:N) {
predY[i] <- mu + phi * Y[i-1];
Y[i] ~ dnorm(predY[i], tau.pro);
}
}
" file=model.loc)
jags.data = list("Y"=Wind, "N"=N)
jags.params=c("sd.pro", "predY", "mu", "phi")
mod_arl_intercept = jags(jags.data, parameters.to.save=jags.params,
model.file=model.loc, n.chains = 3, n.burnin=5000, n.thin=1,
n.iter=10000, DIC=TRUE)

4.6 Univariate state space model

At this point, we’ve fit models with observation or process error, but we
haven’t tried to estimate both simultaneously. We will do so here, and in-
troduce some new notation to describe the process model and observation
model. We use the notation x; to denote the latent state or state of nature
(which is unobserved) at time 7 and ¥; to denote the observed data. For in-
troductory purposes, we’ll make the process model autoregressive (similar to
our AR(1) model),

X =0xx_1+e 1561~ N(0,q) (4.7)
For the process model, there are a number of ways to parameterize
the first ’'state’, and we’ll talk about this more in the class, but for the
sake of this model, we’ll place a vague weakly informative prior on xi,
x1 ~ N(0,0.01).Second, we need to construct an observation model linking
the estimate unseen states of nature x; to the data y;. For simplicitly, we’ll as-
sume that the observation errors are indepdendent and identically distributed,
with no observation component. Mathematically, this model is

yi ~ N(x;,r) (4.8)

In the two above models, ¢ is the process variance and r is the observation
error variance. The JAGS code will use the standard deviation (square root)
of these. The code to produce and fit this model is below:

86 4 Intro to JAGS

B R e i
5. MAKE THE SS MODEL a univariate random walk
no covariates.
B e e
model.loc=("ss_model.txt")
jagsscript = cat("
model {

priors on parameters

mu ~ dnorm(0, 0.01);

tau.pro ~ dgamma(0.001,0.001);

sd.q <- 1/sqrt(tau.pro);

tau.obs ~ dgamma(0.001,0.001);

sd.r <- 1/sqrt(tau.obs);

phi ~ dnorm(0,1);

X[1] <- mu;
predY[1] <- X[1];
Y[1] ~ dnorm(X[1], tau.obs);

for(i in 2:N) {
predX[i] <- phix*X[i-1];
X[i] ~ dnorm(predX[i],tau.pro); # Process variation
predY[i] <- X[i];
Y[i] ~ dnorm(X[i], tau.obs); # Observation variation
}
}
" file=model.loc)
jags.data = list("Y"=Wind, "N"=N)
jags.params=c("sd.q","sd.r", "predY", "mu")
mod_ss = jags(jags.data, parameters.to.save=jags.params, model.file=model.loc, n.chains = .
n.burnin=5000, n.thin=1, n.iter=10000, DIC=TRUE)

4.6.1 Including covariates

Returning to the first example of regression with the intercept only, we’ll
introduce "Temp’ as the covariate explaining our response variable "Wind’.
Note that to include the covariate, we (1) modify the JAGS script to include
a new coeflicient — in this case ’beta’, (2) update the predictive equation to
include the effects of the new covariate, and (3) we include the new covariate
in our named data list.

B
6. Include some covariates in a linear regression

Use temperature as a predictor of wind
B

87

model.loc=("1m.txt")
jagsscript = cat("
model {
mu ~ dnorm(0, 0.01);
beta ~ dnorm(0,0.01);
tau.obs ~ dgamma(0.001,0.001);
sd.obs <- 1/sqrt(tau.obs);

for(i in 1:N) {
predY[i] <- mu + C[i]*beta;
Y[i] ~ dnorm(predY[i], tau.obs);
}
}
" file=model.loc)
jags.data = list("Y"=Wind, "N"=N, "C"=Temp)
jags.params=c("sd.obs", "predY", "mu", "beta")
mod_1lm = jags(jags.data, parameters.to.save=jags.params,
model.file=model.loc, n.chains = 3, n.burnin=5000,
n.thin=1, n.iter=10000, DIC=TRUE)

4.7 Forecasting with JAGS models

There are a number of different approaches to using Bayesian time series
models to perform forecasting. One approach might be to fit a model, and
use those posterior distributions to forecast as a secondary step (say within
R). A more streamlined approach is to do this within the JAGS code itself.
We can take advantage of the fact that JAGS allows you to include NAs in
the response variable (but never in the predictors). Let’s use the same Wind
dataset, and the univariate state-space model described above to forecast three
time steps into the future. We can do this by including 3 more NAs in the
dataset, and incrementing the variable "N” by 3.

jags.data = list("Y"=c(Wind,NA,NA,NA),"N"=(N+3))

jags.params=c("sd.q", "sd.r", "predY", "mu")

model.loc=("ss_model.txt")

mod_ss_forecast = jags(jags.data, parameters.to.save=jags.params,
model.file=model.loc, n.chains = 3, n.burnin=5000, n.thin=1,
n.iter=10000, DIC=TRUE)

We can inspect the fitted model object, and see that 'predY’ contains the
3 new predictions for the forecasts from this model.

88 4 Intro to JAGS

Problems

4.1 Fit the intercept only model from section Set the burn-in to 3, and
when the model completes, plot the time series of the parameter ‘mu’ for
the first MCMC chain.

a) Based on your visual inspection, has the MCMC chain convered?
b) What is the ACF of the first MCMC chain?

4.2 Increase the MCMC burn-in for the model in question 1 to a value that
you think is reasonable. After the model has converged, calculate the
Gelman-Rubin diagnostic for the fitted model object.

4.3 Compare the results of the plotModelOutput () function for the intercept
only model from section [4.2] You will to add "predY” to your JAGS model
and to the list of parameters to monitor, and re-run the model.

4.4 Modify the random walk model without drift from section[4.4]to a random
walk model with drift. The equation for this model is

Ely]=yi1+ute (4.9)

where u is interpreted as the average daily trend in wind speed. What
might be a reasonable prior on u?

4.5 Plot the posterior distribution of ¢ for the AR(1) model in section
Can this parameter be well estimated for this dataset?

4.6 Plot the posteriors for the process and observation variances (not standard
deviation) for the univariate state-space model in section Which is
larger for this dataset?

4.7 Add the effect of temperature to the AR(1) model in section [£.5] Plot the
posterior for 'beta’ and compare to the posterior for ’beta’ from the model

in section [.6.1]

4.8 Plot the fitted values from the model in section[£.7] including the forecasts,
with the 95% credible intervals for each data point.

4.9% The following is a real life dataset from the Upper Skagit River (Puget
Sound, 1952-2005) on salmon spawners and recruits:

Spawners = c(2662,1806,1707,1339,1686,2220,3121,5028,9263,4567,
1850,3353,2836,3961,4624,3262,3898,3039,5966,5931,
7346,4911,3116,3185,5590,2485,2987,3829,4921,2348,
1932,3151,2306,1686,4584,2635,2339, 1454,3705,1510,
1331,942,884,666,1521,409,2388, 1043, 3262,2606,4866,
1161,3070,3320)

Recruits = ¢(12741,15618,23675,37710,62260,32725,8659,28101, 17054,

89

29885,33047,20059,35192,11006,48154,35829,46231,
32405,20782,21340,58392,21553,27528,28246,35163,
15419,16276,32946,11075,16909,22359,8022,16445,2912,
17642,2929,7554,3047,3488,577,4511,1478,3283,1633,
8536,7019,3947,2789,4606,3545,4421,1289,6416,3647)
logRS = log(Recruits/Spawners)
Fit the following Ricker model to these data using the following linear
form of this model with normally distributed errors:

log(R,/S;) = a+bxS, +e;, where ¢, ~ N(0,6?) (4.10)

You will recognize that this form is exactly the same as linear regression,
with independent errors (very similar to the intercept only model of Wind
we fit in section .

Within the constraints of the Ricker model, think about how you might
want to treat the errors. The basic model described above has independent
errors that are not correlated in time. Approaches to analyzing this dataset
might involve

e modeling the errors as independent (as described above)
e modeling the errors as autocorrelated
e fitting a state-space model, with independent or correlated process
errors
Fit each of these models, and compare their performance (either using
their predictive ability, or forecasting ability).

