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Fitting univariate state-space models

This lab show you how to fit some basic univariate state-space models using
MARSS(). This will also introduce you to the idea of writing AR models in
state-space form. Before running the code, load the required R packages:

library(MARSS)

library(stats)

library(forecast)

1.1 Fitting a state-space model with MARSS

The MARSS package fits multivariate auto-regressive models of this form:

xt = Bxt−1 + u + wt where wt ∼ N(0,Q)

yt = Zxt + a + vt where vt ∼ N(0,R)

x0 = µ
(1.1)

To fit your time-series model with MARSS you need to put you model in that
form. The B, Z, u, a, Q, R and µ are parameters that are (potentially) esti-
mated. The y are your data. The x are the hidden state(s). Everything in bold
is a matrix; if it is a small bolded letter, it is a matrix with 1 column.

Important: in a state-space model, y is always the data and x is something
estimated from the data.

A basic MARSS() call looks like fit=MARSS(y, model=list(...)). The
model argument tells MARSS what the parameters look like. The list has the
elements with the names: B, U, Q, Z, A, R, x0 (µ). The names correspond to the
parameters with the same names in Equation 1.1 except that µ is called x0.
tinitx indicates whether the initial x is specified at t = 0 so x0 or t = 1 so x1.

Here’s an example. Let’s say we want to fit a univariate AR-1 model ob-
served with error. Here is that model:
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xt = bxt−1 + wt where wt ∼ N(0,q)

yt = xt + vt where vt ∼ N(0,r)

x0 = µ
(1.2)

To fit this with MARSS(), we need to write Equation 1.2 as Equation 1.1.
Equation 1.1 is in MATRIX form. The MARSS() model list wants the param-
eters written EXACTLY like they would be written for Equation 1.1. For
example, 1 is the number 1 in R. It is not a matrix:

class(1)

[1] "numeric"

If you need a 1 (or 0) in your model, you need to pass in the parameter as a
1×1 matrix: matrix(1).

With that mind, our model list for Equation 1.2 is:

mod.list=list(

B=matrix(1), U=matrix(0), Q=matrix("q"),

Z=matrix(1), A=matrix(0), R=matrix("r"),

x0=matrix("mu"), tinitx=0 )

We can simulate some AR-1 plus error data like so

q=0.1; r=0.1; n=100

y=cumsum(rnorm(n,0,sqrt(q)))+rnorm(n,0,sqrt(r))

And then fit with MARSS() using our mod.list above:

fit=MARSS(y,model=mod.list)

Success! abstol and log-log tests passed at 17 iterations.

Alert: conv.test.slope.tol is 0.5.

Test with smaller values (<0.1) to ensure convergence.

MARSS fit is

Estimation method: kem

Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

Estimation converged in 17 iterations.

Log-likelihood: -84.82259

AIC: 175.6452 AICc: 175.8952

Estimate

R.r 0.120

Q.q 0.125

x0.mu 0.296

Initial states (x0) defined at t=0

Standard errors have not been calculated.

Use MARSSparamCIs to compute CIs and bias estimates.
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If we wanted to fix q = 0.1, then Q = [0.1] (a 1× 1 matrix with 0.1). We
just change mod.list$Q and re-fit:

mod.list$Q=matrix(0.1)

fit=MARSS(y,model=mod.list)

1.2 Examples using the Nile river data

We will use the data from the Nile River (Figure 1.1). We will fit different
flow models to the data and compare the models with AIC.

library(datasets)

dat=as.vector(Nile)
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Fig. 1.1. The Nile River flow volume 1871 to 1970 (included dataset in R ).

1.2.1 Flat level model

We will start by modeling these data as a simple average river flow with
variability around some level µ.
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yt = µ + vt where vt ∼ N(0,r) (1.3)

where yt is the river flow volume at year t.
We can write this model as a univariate state-space model as follows. We

use xt to model the average flow level. yt is just an observation of this flat
xt . Work through x1, x2, . . . starting from x0 to convince yourself that xt will
always equal µ.

xt = 1× xt−1 + 0 + wt where wt ∼ N(0,0)

yt = 1× xt + 0 + vt where vt ∼ N(0,r)

x0 = µ
(1.4)

The model is specified as a list as follows:

mod.nile.0 = list(

B=matrix(1), U=matrix(0), Q=matrix(0),

Z=matrix(1), A=matrix(0), R=matrix("r"),

x0=matrix("mu"), tinitx=0 )

We then fit the model with MARSS().

kem.0 = MARSS(dat, model=mod.nile.0)

Output not shown, but here are the estimates and AICc.

c(coef(kem.0, type="vector"), LL=kem.0$logLik, AICc=kem.0$AICc)

R.r x0.mu LL AICc

28351.5675 919.3500 -654.5157 1313.1552

1.2.2 Linear trend in flow model

Figure 1.2 shows the fit for the flat average river flow model. Looking at the
data, we might expect that a declining average river flow would be better. In
MARSS form, that model would be:

xt = 1× xt−1 + u + wt where wt ∼ N(0,0)

yt = 1× xt + 0 + vt where vt ∼ N(0,r)

x0 = µ
(1.5)

where u is now the average per-year decline in river flow volume. The model
is specified as follows:

mod.nile.1 = list(

B=matrix(1), U=matrix("u"), Q=matrix(0),

Z=matrix(1), A=matrix(0), R=matrix("r"),

x0=matrix("mu"), tinitx=0 )

We then fit the model with MARSS():
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kem.1 = MARSS(dat, model=mod.nile.1)

Here are the estimates, log-likelihood and AICc:

c(coef(kem.1, type="vector"), LL=kem.1$logLik, AICc=kem.1$AICc)

R.r U.u x0.mu LL

22213.595453 -2.692106 1054.935067 -642.315910

AICc

1290.881821

Figure 1.2 shows the fits for the two models with deterministic models (flat
and declining) for mean river flow along with their AICc values (smaller AICc
is better). The AICc for the model with a declining river flow is lower by over
20 (which is a lot).

1.2.3 Stochastic level model

Looking at the flow levels, we might suspect that a model that allows the
average flow to change would model the data better and we might suspect that
there have been sudden, and anomalous, changes in the river flow level. We
will now model the average river flow at year t as a random walk, specifically
an autoregressive process which means that average river flow is year t is a
function of average river flow in year t −1.

xt = xt−1 + wt where wt ∼ N(0,q)

yt = xt + vt where vt ∼ N(0,r)

x0 = µ
(1.6)

As before, yt is the river flow volume at year t. xt is the mean level. The model
is specified as:

mod.nile.2 = list(

B=matrix(1), U=matrix(0), Q=matrix("q"),

Z=matrix(1), A=matrix(0), R=matrix("r"),

x0=matrix("mu"), tinitx=0 )

We could also use the text shortcuts to specify the model. Because R and
Q are 1×1 matrices, “unconstrained”, “diagonal and unequal“, “diagonal and
equal” and “equalvarcov” will all lead to a 1× 1 matrix with one estimated
element. For a and u, the following shortcut could be used:

A=U="zero"

Because x0 is 1 × 1, it could be specified as “unequal”, “equal” or “uncon-
strained”.

kem.2 = MARSS(dat, model=mod.nile.2)

Here are the estimates, log-likelihood and AICc:
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c(coef(kem.2, type="vector"), LL=kem.2$logLik, AICc=kem.2$AICc)

R.r Q.q x0.mu LL AICc

15065.6121 1425.0030 1111.6338 -637.7631 1281.7762

1.2.4 Stochastic level model with drift

We can add a drift to term to our random walk; the u in the process model (x)
is the drift term. This causes the random walk to tend to trend up or down.

xt = xt−1 + u + wt where wt ∼ N(0,q)

yt = xt + vt where vt ∼ N(0,r)

x0 = µ
(1.7)

The model is then specified by changing U to indicate that a u is estimated:

mod.nile.3 = list(

B=matrix(1), U=matrix("u"), Q=matrix("q"),

Z=matrix(1), A=matrix(0), R=matrix("r"),

x0=matrix("mu"), tinitx=0)

kem.3 = MARSS(dat, model=mod.nile.3)

Here are the estimates, log-likelihood and AICc:

c(coef(kem.3, type="vector"), LL=kem.3$logLik, AICc=kem.3$AICc)

R.r U.u Q.q x0.mu

15585.278194 -3.248793 1088.987455 1124.044484

LL AICc

-637.302692 1283.026436

Figure 1.2 shows all the models along with their AICc values.

1.3 The StructTS function

The StructTS function in R will also fit the stochastic level model:

fit.sts = StructTS(dat, type="level")

fit.sts

Call:

StructTS(x = dat, type = "level")

Variances:

level epsilon

1469 15099
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The estimates from StructTS() will be different (though similar) from
MARSS() because StructTS() uses x1 = y1, that is the hidden state at t = 1
is fixed to be the data at t = 1. That is fine if you have a long data set, but
would be disastrous for the short data sets typical in fisheries and ecology.

StructTS() is much, much faster for long time series. The example in
?StructTS is pretty much instantaneous with StructTS() but takes minutes
with the EM algorithm that is the default in MARSS(). With the BFGS algo-
rithm, it is much closer to StructTS():

trees <- window(treering, start = 0)

fitts = StructTS(trees, type = "level")

fitem = MARSS(as.vector(trees),mod.nile.2)

fitbf = MARSS(as.vector(trees),mod.nile.2, method="BFGS")

Note that mod.nile.2 specifies a univariate stochastic level model so we can
use it just fine with other univariate data sets.

In addition, fitted(fit.sts) where fit.sts is a fit from StructTS() is
very different than fit.marss$states from MARSS().

t=10

fitted(fit.sts)[t]

[1] 1162.904

is the expected value of yt+1 (in this case y11 since we set t = 10) given the data
up to yt (in this case, up to y10). It is called the one-step ahead prediction. We
are not going to use the one-step ahead predictions unless we are forecasting
or doing cross-validation.

Typically, when we analyze fisheries and ecological data, we want to know
the estimate of the state, the xt , given ALL the data. For example, we might
need an estimate of the population size in year 1990 given a time series of
counts from 1930 to 2015. We don’t want to use only the data up to 1989;
we want to use all the information. fit.marss$states from MARSS() is the
expected value of xt given all the data. For the stochastic level model, that is
equal to the expected value of yt given all the data except yt .

If you needed the one-step predictions from MARSS, you can get them from
the Kalman filter output:

kf=print(kem.2, what="kfs")

kf$xtt1[1,t]

kfs means Kalman filter/smoother and passing in what="kfs" is saying to re-
turn the Kalman filter/smoother output. The expected value of xt conditioned
on y1 to yt−1 is in xtt1 of that output. The expected value of xt conditioned
on all the data is in xtT.
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Fig. 1.2. The Nile River flow volume with the model estimated flow rates (solid
lines). The bottom model is a stochastic level model, meaning there isn’t one level
line. Rather the level line is a distribution that has a mean and standard deviation.
The solid state line in the bottom plots is the mean of the stochastic level and the 2
standard deviations are shown. The other two models are deterministic level models
so the state is not stochastic and does not have a standard deviation.

1.4 Comparing models with AIC and model weights

To get the AIC or AICc values for a model fit from a MARSS fit, use fit$AIC
or fit$AICc. The log-likelihood is in fit$logLik and the number of estimated
parameters in fit$num.params. For fits from other functions, try AIC(fit)

or look at the function documentation.
Let’s put the AICc values 3 Nile models together:

nile.aic = c(kem.0$AICc, kem.1$AICc, kem.2$AICc, kem.3$AICc)
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Then we calculate the AICc minus the minus AICc in our model set and
compute the model weights. ∆AIC is the AIC values minus the minimum AIC
value in your model set.

delAIC= nile.aic-min(nile.aic)

relLik=exp(-0.5*delAIC)

aicweight=relLik/sum(relLik)

And this leads to our model weights table:

aic.table=data.frame(

AICc=nile.aic,

delAIC=delAIC,

relLik=relLik,

weight=aicweight)

rownames(aic.table)=c("flat level","linear trend", "stoc level", "stoc level w drift")

Here the table is printed using round() to limit the number of digits shown.

round(aic.table, digits=3)

AICc delAIC relLik weight

flat level 1313.155 31.379 0.000 0.000

linear trend 1290.882 9.106 0.011 0.007

stoc level 1281.776 0.000 1.000 0.647

stoc level w drift 1283.026 1.250 0.535 0.346

One thing to keep in mind when comparing models within a set of models
is that the model set needs to include at least one model that can fit the
data reasonably well. ‘Reasonably well’ means the model can put a fitted line
through the data. Can’t all models do that? Definitely, not. For example,
the flat-level model cannot put a fitted line through the Nile River data. It
is simply impossible. The straight trend model also cannot put a fitted line
through the flow data. So if our model set only included flat-level and straight
trend, then we might have said that the straight trend model is ‘best’ even
though it is just the better of two bad models.

1.5 Basic diagnostics

The first diagnostic that you do with any statistical analysis is check that your
residuals correspond to your assumed error structure. We have two types of
errors in a univariate state-space model: process errors, the wt , and observation
errors, the vt . They should not have a temporal trend. To get the residuals
from most types of fits in R, you can use residuals(fit). MARSS calls the
vt , model residuals, and the wt state residuals. We can plot these using the
following code (Figure 1.3).
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par(mfrow=c(1,2))

resids=residuals(kem.0)

plot(resids$model.residuals[1,],

ylab="model residual", xlab="", main="flat level")

abline(h=0)

plot(resids$state.residuals[1,],

ylab="state residual", xlab="", main="flat level")

abline(h=0)
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Fig. 1.3. The model and state residuals for the first 3 models.

The residuals should also not be autocorrelated in time. We can check the
autocorrelation with acf. We won’t do this for the state residuals for the flat
level or linear trends since for those models wt = 0. The acf’s are shown in
Figure 1.4. The stochastic level model looks the best in that its model residuals
(the vt) are fine but the state model still has problems. Clearly the state is
not a simple random walk. This is not surprising. The Aswan Low Dam was
completed in 1902 and changed the mean flow. The Aswan High Dam was
completed in 1970 and also affected the flow. You can see these perturbations
in Figure 1.1.
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par(mfrow=c(2,2))

resids=residuals(kem.0)

acf(resids$model.residuals[1,], main="flat level v(t)")

resids=residuals(kem.1)

acf(resids$model.residuals[1,], main="linear trend v(t)")

resids=residuals(kem.2)

acf(resids$model.residuals[1,], main="stoc level v(t)")

acf(resids$state.residuals[1,], main="stoc level w(t)")
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Fig. 1.4. The model and state residual acfs for the 3 models.
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1.6 Fitting a univariate AR-1 state-space model with
JAGS*

Here we show how to fit model 3, Equation 1.7, with JAGS. First load the
required packages:

library(coda)

library(R2jags)

Next write the model for JAGS to a file (filename in model.loc):

model.loc="ss_model.txt"

jagsscript = cat("

model {

# priors on parameters

mu ~ dnorm(Y1, 1/(Y1*100)); # normal mean = 0, sd = 1/sqrt(0.01)

tau.q ~ dgamma(0.001,0.001); # This is inverse gamma

sd.q <- 1/sqrt(tau.q); # sd is treated as derived parameter

tau.r ~ dgamma(0.001,0.001); # This is inverse gamma

sd.r <- 1/sqrt(tau.r); # sd is treated as derived parameter

u ~ dnorm(0, 0.01);

# Because init X is specified at t=0

X0 <- mu

X[1] ~ dnorm(X0+u,tau.q);

Y[1] ~ dnorm(X[1], tau.r);

for(i in 2:N) {

predX[i] <- X[i-1]+u;

X[i] ~ dnorm(predX[i],tau.q); # Process variation

Y[i] ~ dnorm(X[i], tau.r); # Observation variation

}

}

",file=model.loc)

Next we specify the data (and any other input) that the JAGS code needs. In
this case, we need to pass in dat and the number of time steps since that is
used in the for loop. We also specify the parameters that we want to monitor.
We need to specify at least one, but we will monitor all of them so we can plot
them after fitting. Note, that the hidden state is a parameter in the Bayesian
context (but not in the maximum likelihood context).

jags.data = list("Y"=dat, "N"=length(dat), Y1=dat[1])

jags.params=c("sd.q","sd.r","X","mu", "u")

Now we can fit the model:

mod_ss = jags(jags.data, parameters.to.save=jags.params,

model.file=model.loc, n.chains = 3,

n.burnin=5000, n.thin=1, n.iter=10000, DIC=TRUE)
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We can then show the posteriors with the MLEs from MARSS on top:

attach.jags(mod_ss)

par(mfrow=c(2,2))

hist(mu)

abline(v=coef(kem.3)$x0, col="red")

hist(u)

abline(v=coef(kem.3)$U, col="red")

hist(log(sd.q^2))

abline(v=log(coef(kem.3)$Q), col="red")

hist(log(sd.r^2))

abline(v=log(coef(kem.3)$R), col="red")

detach.jags()
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Fig. 1.5. The posteriors for model 3 with MLE estimates from MARSS shown in
red.

To plot the estimated states, we write a helper function:

plotModelOutput = function(jagsmodel, Y) {

attach.jags(jagsmodel)

x = seq(1,length(Y))
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XPred = cbind(apply(X,2,quantile,0.025), apply(X,2,mean), apply(X,2,quantile,0.975))

ylims = c(min(c(Y,XPred), na.rm=TRUE), max(c(Y,XPred), na.rm=TRUE))

plot(Y, col="white",ylim=ylims, xlab="",ylab="State predictions")

polygon(c(x,rev(x)), c(XPred[,1], rev(XPred[,3])), col="grey70",border=NA)

lines(XPred[,2])

points(Y)

}

plotModelOutput(mod_ss, dat)

lines(kem.3$states[1,], col="red")

lines(1.96*kem.3$states.se[1,]+kem.3$states[1,], col="red", lty=2)

lines(-1.96*kem.3$states.se[1,]+kem.3$states[1,], col="red", lty=2)

title("State estimate and data from\nJAGS (black) versus MARSS (red)")
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Fig. 1.6. The estimated states from the Bayesian fit along with 95% credible inter-
vals (black and grey) with the MLE states and 95% condidence intervals in red.
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1.7 A simple random walk model of animal movement

A simple random walk model of movement with drift (directional movement)
but no correlation is

x1,t = x1,t−1 + u1 + w1,t , w1,t ∼ N(0,σ2
1) (1.8)

x2,t = x2,t−1 + u2 + w2,t , w2,t ∼ N(0,σ2
2) (1.9)

where x1,t is the location at time t along one axis (here, longitude) and x2,t is
for another, generally orthogonal, axis (in here, latitude). The parameter u1 is
the rate of longitudinal movement and u2 is the rate of latitudinal movement.
We add errors to our observations of location:

y1,t = x1,t + v1,t , v1,t ∼ N(0,η2
1) (1.10)

y2,t = x2,t + v2,t , v2,t ∼ N(0,η2
2), (1.11)

This model is comprised of two separate univariate state-space models.
Note that y1 depends only on x1 and y2 depends only on x2. There are no
actual interactions between these two univariate models. However, we can
write the model down in the form of a multivariate model using diagonal
variance-covariance matrices and a diagonal design (Z) matrix. Because the
variance-covariance matrices and Z are diagonal, the x1:y1 and x2:y2 processes
will be independent as intended. Here are Equations 1.9 and 1.11 written as
a MARSS model (in matrix form):[

x1,t
x2,t

]
=

[
x1,t−1
x2,t−1

]
+

[
u1
u2

]
+

[
w1,t
w2,t

]
, wt ∼ MVN

(
0,
[

σ2
1 0

0 σ2
2

])
(1.12)

[
y1,t
y2,t

]
=

[
1 0
0 1

][
x1,t
x2,t

]
+

[
v1,t
v2,t

]
, vt ∼ MVN

(
0,
[

η2
1 0

0 η2
2

])
(1.13)

The variance-covariance matrix for wt is a diagonal matrix with unequal vari-
ances, σ2

1 and σ2
2. The variance-covariance matrix for vt is a diagonal matrix

with unequal variances, η2
1 and η2

2. We can write this succinctly as

xt = xt−1 + u + wt , wt ∼ MVN(0,Q) (1.14)

yt = xt + vt , vt ∼ MVN(0,R). (1.15)
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Problems

1.1 Write the equations for each of these models: ARIMA(0,0,0), ARIMA(0,1,0),
ARIMA(1,0,0), ARIMA(0,0,1), ARIMA(1,0,1). Read the help file for
Arima (forecast package) if you are fuzzy on the arima notation.

1.2 The MARSS package includes a data set of sharp-tailed grouse in Wash-
ington. Load the data to use as follows:

library(MARSS)

dat=log(grouse[,2])

Consider these two models for the data:

Model 1 random walk with no drift observed with no error
Model 2 random walk with drift observed with no error

Written as a univariate state-space model, model 1 is

xt = xt−1 + wt where wt ∼ N(0,q)

x0 = a

yt = xt

(1.16)

Model 2 is almost identical except with u added

xt = xt−1 + u + wt where wt ∼ N(0,q)

x0 = a

yt = xt

(1.17)

y is the log grouse count in year t.
a) Plot the data. The year is in column 1 of grouse.
b) Fit each model using MARSS().
c) Which one appears better supported given AICc?
d) Load the forecast package. Use ?auto.arima to learn what it does.

Then use auto.arima(dat) to fit the data. Next run auto.arima on
the data with trace=TRUE to see all the ARIMA models it compared.
Note, ARIMA(0,1,0) is a random walk with b=1. ARIMA(0,1,0) with
drift would be a random walk (b=1) with drift (with u).

e) Is the difference in the AICc values between a random walk with and
without drift comparable between MARSS() and auto.arima()?

Note when using auto.arima, it will fit AR-1 models of the following form
(notice the b): xt = bxt−1 +wt . auto.arima refers this model xt = xt−1 +wt ,
which is also AR-1 but with b = 1, as ARIMA(0,1,0). This says that the
first difference of the data (that’s the 1 in the middle) is a ARMA(0,0)
process (the 0s in the 1st and 3rd spots). So ARIMA(0,1,0) means this:
xt − xt−1 = wt .

1.3 Create a random walk with drift time series using the following command:
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dat=cumsum(rnorm(100,0.1,1))

Use ?rnorm to make sure you know what the arguments to rnorm are.

a) Write out the equation for that random walk as a univariate state-
space model.

b) What is the order of this random walk written as ARIMA(p, d, q)?
”what is the order” means ”what is p, d, and q. Model ”order” is how
arima and Arima specify arima models.

c) Fit that model using Arima() in the forecast package. You’ll need
to specify the order and include.drift term. Use ?Arima to review
what that function does if needed.

d) Fit that model with MARSS().
e) How are the two estimates different?

Now fit the first-differenced data:

diff.dat=diff(dat)

Use ?diff to check what the diff function does.

f) If xt denotes a time series. What is the first difference of x? What is
the second difference?

g) What is the x model for diff.dat? Look at your answer to part (a)
and the answer to part (e).

h) Fit diff.dat using Arima(). You’ll need to change order and include.mean.
i) Fit that model with MARSS().

If you’ve done this right, the estimated parameters using Arima and MARSS

will now be the same.
This question should clue you into the fact that Arima is not exactly fitting
Equation 1.1. It’s very similar, but not quite written that way. By the way,
Equation 1.1 is how structural time series observed with error are written
(state-space models). To recover the estimates that a function like arima

or Arima returns, you need to write your state-space model in a specific
way (as seen above).

1.4 Arima() will also fit what it calls an ‘AR-1 with drift’. An AR-1 with drift
is NOT this model:

xt = bxt−1 + u + wt where wt ∼ N(0,q) (1.18)

The population dynamics literature, this equation is called the Gompertz
model and is a type of density-dependent population model.

a) Write R code to simulate Equation 1.18. Make b less than 1 and greater
than 0. Set u and x0 to whatever you want. You can use a for loop.

b) Plot the trajectories and show that this model does not “drift” upward
or downward. It fluctuates about a mean value.

c) Hold b constant and change u. How do the trajectories change?
d) Hold u constant and change b. Make sure to use a b close to 1 and

another close to 0. How do the trajectories change?
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e) Do 2 simulations each with the same wt . In one simulation, set u = 1
and in the other u = 2. For both simulations, set x1 = u/(1−b). You can
set b to whatever you want as long as 0 < b < 1. Plot the 2 trajectories
on the same plot. What is different?

We will fit what Arima calls “AR-1 with drift” models in the chapter on
MARSS models with covariates.

1.5 The MARSS package includes a data set of gray whales. Load the data to
use as follows:

library(MARSS)

dat=log(graywhales[,2])

Fit a random walk with drift model observed with error to the data:

xt = xt−1 + u + wt where wt ∼ N(0,q)

yt = xt + vt where vt ∼ N(0,r)

x0 = a
(1.19)

y is the whale count in year t. x is interpreted as the ’true’ unknown
population size that we are trying to estimate.

a) Fit this model with MARSS()

b) Plot the estimated x as a line with the actual counts added as points.
x is in fit$states. It is a matrix, which plot will not like so you will
need to change it to a vector using as.vector() or fit$states[1,]

c) Simulate 1000 sample trajectories using the estimated u and q starting
at the estimated x in 1997. You can do this with a couple for loops
or write something terse with cumsum and apply.

d) Using these simulated trajectories, what is your estimated probability
of reaching 50,000 graywhales in 2007.

e) What kind of uncertainty does that estimate NOT include?

1.6 Fit the following models to the graywhales data using MARSS(). Assume
b = 1.

Model 1 Process error only model with drift
Model 2 Process error only model without drift
Model 3 Process error with drift and observation error with observation

error variance fixed = 0.05.
Model 4 Process error with drift and observation error with observation

error variance estimated.

a) Compute the AICc’s for each model and likelihood or deviance (-2 *
log likelihood). Where to find these? Try names(fit). logLik() is the
standard R function to return log-likelihood from fits.

b) Calculate a table of ∆AICc values and AICc weights.
c) Show the acf of the model and state residuals for the best model. You

will need a vector of the residuals to do this. If fit is the fit from a
fit call like fit = MARSS(dat), you get the residuals using this code:
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residuals(fit)$state.residuals[1,]

residuals(fit)$model.residuals[1,]

Do the acf’s suggest any problems?

1.7 Evaluate the predictive accuracy of forecasts using the forecast package
using the ’airmiles’ dataset. Load the data to use as follows:

library(forecast)

dat=log(airmiles)

n=length(dat)

training.dat = dat[1:(n-3)]

test.dat = dat[(n-2):n]

This will prepare the training data and set aside the last 3 data points for
validation.

a) Fit the following four models using Arima(): ARIMA(0,0,0), ARIMA(1,0,0),
ARIMA(0,0,1), ARIMA(1,0,1).

b) Use forecast() to make 3 step ahead forecasts from each.
c) Calculate the MASE statistic for each using the accuracy function

in the forecast package. Type ?accuracy to learn how to use this
function.

d) Present the results in a table.
e) Which model is best supported based on the MASE statistic?

1.8 The WhaleNet Archive of STOP Data has movement data on loggerhead
turtles on the east coast of the US from ARGOS tags. The MARSS package
loggerheadNoisy dataset is lat/lot data on eight individuals, however we
have corrupted this data severely by adding random errors in order to
create a “bad tag” problem (very noisy). Use head(loggerheadNoisy)

to get an idea of the data. Then load the data on one turtle, MaryLee.
MARSS needs time across the columns to you need to use transpose the
data (as shown).
turtlename="MaryLee"

dat = loggerheadNoisy[which(loggerheadNoisy$turtle==turtlename),5:6]

dat = t(dat)

a) Plot MaryLee’s locations (as a line not dots). Put the latitude lo-
cations on the y-axis and the longitude on the y-axis. You can use
rownames(dat) to see which is in which row. You can just use plot()

for the homework. But if you want, you can look at the MARSS Man-
ual chapter on animal movement to see how to plot the turtle locations
on a map using the maps package.

b) Analyze the data with a state-space model (movement observed with
error) using
fit0 = MARSS(dat)

Look at the output from the above MARSS call. What are each of the
parameters output from MARSS?
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c) What assumption did the default MARSS model make about obser-
vation error and process error?

d) Does MaryLee move faster in the latitude direction versus longitude
direction?

e) Add MaryLee’s estimated ”true”positions to your plot of her locations.
You can use lines(x, y, col="red") (with x and y replaced with
your x and y data). The true position is the ”state”. This is in the
states element of an output from MARSS fit0$states.

f) Compare the following models for these data. Movement in the lat/lon
direction is (1) independent but the variance is the same, (2) is cor-
related and lat/lon variances are different, and (3) is correlated and
the lat/lon variances are the same. You only need to change Q speci-
fication. Your MARSS call will now look like with ... replaced with
your Q specification.
fit1 = MARSS(dat, list(Q=...))

g) Plot your state residuals (true location residuals). What are the prob-
lems? Discuss in reference to your plot of the location data. Here is
how to get state residuals from MARSS:
resids = residuals(fit0)$state.residuals

The lon residuals are in row 1 and lat residuals are in row 2 (same
order as the data).
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