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Introduction to basic time series functions in R

This chapter introduces you to some of the basic functions in R for plotting
and analyzing univariate time series data. Many of the things you learn here
will be relevant when we start examining multivariate time series as well. We
will begin with the creation and plotting of time series objects in R, and then
moves on to decomposition, differencing, and correlation (e.g., ACF, PACF)
before ending with fitting and simulation of ARMA models.

1.1 Time series plots

Time series plots are an excellent way to begin the process of understanding
what sort of process might have generated the data of interest. Traditionally,
time series have been plotted with the observed data on the y-axis and time
on the x-axis. Sequential time points are usually connected with some form of
line, but sometimes other plot forms can be a useful way of conveying impor-
tant information in the time series (e.g., barplots of sea-surface temperature
anomolies show nicely the contrasting El Niño and La Niña phenomena).

Let’s start by importing some data; the record of the atmospheric con-
centration of CO2 collected at the Mauna Loa Observatory in Hawai’i makes
a nice example. The data file contains some extra information that we don’t
need, so we’ll only read in a subset of the columns (i.e., 1, 2 & 5).

## get CO2 data from Mauna Loa observatory

ww1 <- "ftp://aftp.cmdl.noaa.gov/products/"

ww2 <- "trends/co2/co2_mm_mlo.txt"

CO2 <- read.table(text=getURL(paste0(ww1,ww2)))[,c(1,2,5)]

## assign better column names

colnames(CO2) <- c("year","month","ppm")
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1.1.1 ts objects and plot.ts

The data are now stored in R as a data.frame, but we would like to transform
the class to a more user-friendly format for dealing with time series. Fortu-
nately, the ts function will do just that, and return an object of class ts as
well. In addition to the data themselves, we need to provide ts with 2 pieces
of information about the time index for the data.

The first, frequency, is a bit of a misnomer because it does not really
refer to the number of cycles per unit time, but rather the number of observa-
tions/samples per cycle. So, for example, if the data were collected each hour
of a day then frequency=24.

The second, start, specifies the first sample in terms of (day, hour), (year,
month), etc. So, for example, if the data were collected monthly beginning
in November of 1969, then frequency=12 and start=c(1969,11). If the
data were collected annually, then you simply specify start as a scalar (e.g.,
start=1991) and omit frequency (i.e., R will set frequency=1 by default).

The Mauna Loa time series is collected monthly and begins in March of
1958, which we can get from the data themselves, and then pass to ts:

## create a time series (ts) object from the CO2 data

co2 <- ts(data=CO2$ppm, frequency=12,

start=c(CO2[1,"year"],CO2[1,"month"]))

Now let’s plot the data using plot.ts, which is designed specifically for
ts objects like the one we just created above. It’s nice because we don’t need
to specify any x-values as they are taken directly from the ts object.

## plot the ts

plot.ts(co2, ylab=expression(paste("CO"[2]," (ppm)")))
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Fig. 1.1. Time series of the atmospheric CO2 concentration at Mauna Loa, Hawai’i
measured monthly from March 1958 to present.
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Examination of the plotted time series (Figure 1.1) shows 2 obvious fea-
tures that would violate any assumption of stationarity: 1) an increasing (and
perhaps non-linear) trend over time, and 2) strong seasonal patterns. (Aside:
Do you know the causes of these 2 phenomena?)

1.1.2 Combining and plotting multiple ts objects

Before we examine the CO2 data further, however, let’s see a quick example
of how you can combine and plot multiple time series together. We’ll begin
by getting a second time series (monthly mean temperature anomolies for the
Northern Hemisphere) and convert them to a ts object.

## get N Hemisphere land & ocean temperature anomalies from NOAA

ww1 <- "https://www.ncdc.noaa.gov/cag/time-series/"

ww2 <- "global/nhem/land_ocean/p12/12/1880-2014.csv"

Temp <- read.csv(text=getURL(paste0(ww1,ww2)), skip=3)

## create ts object

tmp <- ts(data=Temp$Value, frequency=12, start=c(1880,1))

Before we can plot the two time series together, however, we need to line up
their time indices because the temperature data start in January of 1880, but
the CO2 data start in March of 1958. Fortunately, the ts.intersect function
makes this really easy once the data have been transformed to ts objects by
trimming the data to a common time frame. Also, ts.union works in a similar
fashion, but it pads one or both series with the appropriate number of NA’s.
Let’s try both.

## intersection (only overlapping times)

datI <- ts.intersect(co2,tmp)

## dimensions of common-time data

dim(datI)

[1] 682 2

## union (all times)

datU <- ts.union(co2,tmp)

## dimensions of all-time data

dim(datU)

[1] 1643 2

As you can see, the intersection of the two data sets is much smaller than
the union. If you compare them, you will see that the first 938 rows of datU

contains NA in the co2 column.
It turns out that the regular plot function in R is smart enough to recognize

a ts object and use the information contained therein appropriately. Here’s
how to plot the intersection of the two time series together with the y-axes on
alternate sides (results are shown in Figure 1.2):
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## plot the ts

plot(datI, main="", yax.flip=TRUE)
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Fig. 1.2. Time series of the atmospheric CO2 concentration at Mauna Loa, Hawai’i
(top) and the mean temperature index for the Northern Hemisphere (bottom) mea-
sured monthly from March 1958 to present.

1.2 Decomposition of time series

Plotting time series data is an important first step in analyzing their various
components. Beyond that, however, we need a more formal means for identi-
fying and removing characteristics such as a trend or seasonal variation. As
discussed in lecture, the decomposition model reduces a time series into 3
components: trend, seasonal effects, and random errors. In turn, we aim to
model the random errors as some form of stationary process.

Let’s begin with a simple, additive decomposition model for a time series
xt

xt = mt + st + et , (1.1)

where, at time t, mt is the trend, st is the seasonal effect, and et is a random
error that we generally assume to have zero-mean and to be correlated over
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time. Thus, by estimating and subtracting both {mt} and {st} from {xt}, we
hope to have a time series of stationary residuals {et}.

1.2.1 Estimating trends

In lecture we discussed how linear filters are a common way to estimate trends
in time series. One of the most common linear filters is the moving average,
which for time lags from −a to a is defined as

m̂t =
a

∑
k=−a

(
1

1 + 2a

)
xt+k. (1.2)

This model works well for moving windows of odd-numbered lengths, but
should be adjusted for even-numbered lengths by adding only 1

2 of the 2 most
extreme lags so that the filtered value at time t lines up with the original
observation at time t. So, for example, in a case with monthly data such as
the atmospheric CO2 concentration where a 12-point moving average would
be an obvious choice, the linear filter would be

m̂t =
1
2 xt−6 + xt−5 + · · ·+ xt−1 + xt + xt+1 + · · ·+ xt+5 + 1

2 xt+6

12
(1.3)

It is important to note here that our time series of the estimated trend {m̂t}
is actually shorter than the observed time series by 2a units.

Conveniently, R has the built-in function filter for estimating moving-
average (and other) linear filters. In addition to specifying the time series to
be filtered, we need to pass in the filter weights (and 2 other arguments we
won’t worry about here–type ?filter to get more information). The easiest
way to create the filter is with the rep function:

## weights for moving avg

fltr <- c(1/2,rep(1,times=11),1/2)/12

Now let’s get our estimate of the trend {m̂} with filter and plot it:

## estimate of trend

co2.trend <- filter(co2, filter=fltr, method="convo", sides=2)

## plot the trend

plot.ts(co2.trend, ylab="Trend", cex=1)

The trend is a more-or-less smoothly increasing function over time, the average
slope of which does indeed appear to be increasing over time as well (Figure
1.3).
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Fig. 1.3. Time series of the estimated trend {m̂t} for the atmospheric CO2 concen-
tration at Mauna Loa, Hawai’i.

1.2.2 Estimating seasonal effects

Once we have an estimate of the trend for time t (m̂t) we can easily obtain an
estimate of the seasonal effect at time t (ŝt) by subtraction

ŝt = xt − m̂t , (1.4)

which is really easy to do in R:

## seasonal effect over time

co2.1T <- co2 - co2.trend

This estimate of the seasonal effect for each time t also contains the random
error et , however, which can be seen by plotting the time series and careful
comparison of Equations (1.1) and (1.4).

## plot the monthly seasonal effects

plot.ts(co2.1T, ylab="Seasonal effect", xlab="Month", cex=1)

We can obtain the overall seasonal effect by averaging the estimates of {ŝt}
for each month and repeating this sequence over all years.

## length of ts

ll <- length(co2.1T)

## frequency (ie, 12)

ff <- frequency(co2.1T)

## number of periods (years); %/% is integer division

periods <- ll %/% ff

## index of cumulative month

index <- seq(1,ll,by=ff) - 1

## get mean by month

mm <- numeric(ff)
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Fig. 1.4. Time series of seasonal effects plus random errors for the atmospheric
CO2 concentration at Mauna Loa, Hawai’i, measured monthly from March 1958 to
present.

for(i in 1:ff) {

mm[i] <- mean(co2.1T[index+i], na.rm=TRUE)

}

## subtract mean to make overall mean=0

mm <- mm - mean(mm)

Before we create the entire time series of seasonal effects, let’s plot them
for each month to see what is happening within a year:

## plot the monthly seasonal effects

plot.ts(mm, ylab="Seasonal effect", xlab="Month", cex=1)

It looks like, on average, that the CO2 concentration is highest in spring
(March) and lowest in summer (August) (Figure 1.5). (Aside: Do you know
why this is?)

Finally, let’s create the entire time series of seasonal effects {ŝt}:

## create ts object for season

co2.seas <- ts(rep(mm, periods+1)[seq(ll)],

start=start(co2.1T),

frequency=ff)

1.2.3 Completing the model

The last step in completing our full decomposition model is obtaining the
random errors {êt}, which we can get via simple subtraction

êt = xt − m̂t − ŝt . (1.5)

Again, this is really easy in R:
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Fig. 1.5. Estimated monthly seasonal effects for the atmospheric CO2 concentration
at Mauna Loa, Hawai’i.

## random errors over time

co2.err <- co2 - co2.trend - co2.seas

Now that we have all 3 of our model components, let’s plot them together
with the observed data {xt}. The results are shown in Figure 1.6.

## plot the obs ts, trend & seasonal effect

plot(cbind(co2,co2.trend,co2.seas,co2.err),main="",yax.flip=TRUE)

1.2.4 Using decompose for decomposition

Now that we have seen how to estimate and plot the various components of a
classical decomposition model in a piecewise manner, let’s see how to do this
in one step in R with the function decompose, which accepts a ts object as
input and returns an object of class decomposed.ts.

## decomposition of CO2 data

co2.decomp <- decompose(co2)

co2.decomp is a list with the following elements, which should be familiar by
now:

x the observed time series {xt}
seasonal time series of estimated seasonal component {ŝt}
figure mean seasonal effect (length(figure) == frequency(x))
trend time series of estimated trend {m̂t}
random time series of random errors {êt}
type type of error ("additive" or "multiplicative")

We can easily make plots of the output and compare them to those in
Figure 1.6:
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Fig. 1.6. Time series of the observed atmospheric CO2 concentration at Mauna Loa,
Hawai’i (top) along with the estimated trend, seasonal effects, and random errors.

## plot the obs ts, trend & seasonal effect

plot(co2.decomp, yax.flip=TRUE)

The results obtained with decompose (Figure 1.7) are identical to those we
estimated previously.

Another nice feature of the decompose function is that it can be used for
decomposition models with multiplicative (i.e., non-additive) errors (e.g., if
the original time series had a seasonal amplitude that increased with time).
To do, so pass in the argument type="multiplicative", which is set to
type="additive" by default.

1.3 Differencing to remove a trend or seasonal effects

An alternative to decomposition for removing trends is differencing. We saw
in lecture how the difference operator works and how it can be used to remove
linear and nonlinear trends as well as various seasonal features that might be
evident in the data. As a reminder, we define the difference operator as
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Decomposition of additive time series

Fig. 1.7. Time series of the observed atmospheric CO2 concentration at Mauna Loa,
Hawai’i (top) along with the estimated trend, seasonal effects, and random errors
obtained with the function decompose.

∇xt = xt − xt−1, (1.6)

and, more generally, for order d

∇
dxt = (1−B)dxt , (1.7)

where B is the backshift operator (i.e., Bkxt = xt−k for k ≥ 1).
So, for example, a random walk is one of the most simple and widely used

time series models, but it is not stationary. We can write a random walk model
as

xt = xt−1 + wt , with wt ∼N(0,q). (1.8)

Applying the difference operator to Equation (1.8) will yield a time series of
Gaussian white noise errors {wt}:

∇(xt = xt−1 + wt)

xt − xt−1 = xt−1− xt−1 + wt

xt − xt−1 = wt

(1.9)
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1.3.1 Using the diff function

In R we can use the diff function for differencing a time series, which re-
quires 3 arguments: x (the data), lag (the lag at which to difference), and
differences (the order of differencing; d in Equation (1.7)). For example,
first-differencing a time series will remove a linear trend (i.e., differences=1);
twice-differencing will remove a quadratic trend (i.e., differences=2). In ad-
dition, first-differencing a time series at a lag equal to the period will remove
a seasonal trend (e.g., set lag=12 for monthly data).

Let’s use diff to remove the trend and seasonal signal from the CO2 time
series, beginning with the trend. Close inspection of Figure 1.1 would suggest
that there is a nonlinear increase in CO2 concentration over time, so we’ll set
differences=2):

## twice-difference the CO2 data

co2.D2 <- diff(co2, differences=2)

## plot the differenced data

plot(co2.D2, ylab=expression(paste(nabla^2,"CO"[2])))
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Fig. 1.8. Time series of the twice-differenced atmospheric CO2 concentration at
Mauna Loa, Hawai’i.

We were apparently successful in removing the trend, but the seasonal ef-
fect still appears obvious (Figure 1.8). Therefore, let’s go ahead and difference
that series at lag-12 because our data were collected monthly.

## difference the differenced CO2 data

co2.D2D12 <- diff(co2.D2, lag=12)

## plot the newly differenced data

plot(co2.D2D12,

ylab=expression(paste(nabla,"(",nabla^2,"CO"[2],")")))
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Fig. 1.9. Time series of the lag-12 difference of the twice-differenced atmospheric
CO2 concentration at Mauna Loa, Hawai’i.

Now we have a time series that appears to be random errors without any
obvious trend or seasonal components (Figure 1.9).

1.4 Correlation within and among time series

The concepts of covariance and correlation are very important in time series
analysis. In particular, we can examine the correlation structure of the original
data or random errors from a decomposition model to help us identify possible
form(s) of (non)stationary model(s) for the stochastic process.

1.4.1 Autocorrelation function (ACF)

Autocorrelation is the correlation of a variable with itself at differing time
lags. Recall from lecture that we defined the sample autocovariance function
(ACVF), ck, for some lag k as

ck =
1
n

n−k

∑
t=1

(xt − x̄)(xt+k− x̄) (1.10)

Note that the sample autocovariance of {xt} at lag 0, c0, equals the sample
variance of {xt} calculated with a denominator of n. The sample autocorrela-
tion function (ACF) is defined as

rk =
ck

c0
= Cor(xt ,xt+k) (1.11)

Recall also that an approximate 95% confidence interval on the ACF can
be estimated by
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−1
n
± 2√

n
(1.12)

where n is the number of data points used in the calculation of the ACF.
It is important to remember two things here. First, although the confidence

interval is commonly plotted and interpreted as a horizontal line over all time
lags, the interval itself actually grows as the lag increases because the number
of data points n used to estimate the correlation decreases by 1 for every
integer increase in lag. Second, care must be exercised when interpreting the
“significance” of the correlation at various lags because we should expect, a
priori, that approximately 1 out of every 20 correlations will be significant
based on chance alone.

We can use the acf function in R to compute the sample ACF (note that
adding the option type="covariance" will return the sample auto-covariance
(ACVF) instead of the ACF–type ?acf for details). Calling the function by
itself will will automatically produce a correlogram (i.e., a plot of the autocor-
relation versus time lag). The argument lag.max allows you to set the number
of positive and negative lags. Let’s try it for the CO2 data.

## correlogram of the CO2 data

acf(co2, lag.max=36)
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Fig. 1.10. Correlogram of the observed atmospheric CO2 concentration at Mauna
Loa, Hawai’i obtained with the function acf.

There are 4 things about Figure 1.10 that are noteworthy:

1. the ACF at lag 0, r0, equals 1 by default (i.e., the correlation of a time
series with itself)–it’s plotted as a reference point;

2. the x-axis has decimal values for lags, which is caused by R using the year
index as the lag rather than the month;

3. the horizontal blue lines are the approximate 95% CI’s; and



14 1 Introduction to time series in R

4. there is very high autocorrelation even out to lags of 36 months.

As an alternative to the plotting utility in acf, let’s define a new plot function
for acf objects with some better features:

plot.acf <- function(ACFobj) {

rr <- ACFobj$acf[-1]

kk <- length(rr)

nn <- ACFobj$n.used

plot(seq(kk),rr,type="h",lwd=2,yaxs="i",xaxs="i",

ylim=c(floor(min(rr)),1),xlim=c(0,kk+1),

xlab="Lag",ylab="Correlation",las=1)

abline(h=-1/nn+c(-2,2)/sqrt(nn),lty="dashed",col="blue")

abline(h=0)

}

Now we can assign the result of acf to a variable and then use the infor-
mation contained therein to plot the correlogram with our new plot function.

## acf of the CO2 data

co2.acf <- acf(co2, lag.max=36)

## correlogram of the CO2 data

plot.acf(co2.acf)

0 5 10 15 20 25 30 35

0.0

0.2

0.4

0.6

0.8

1.0

Lag

C
or

re
la

tio
n

Fig. 1.11. Correlogram of the observed atmospheric CO2 concentration at Mauna
Loa, Hawai’i obtained with the function plot.acf.

Notice that all of the relevant information is still there (Figure 1.11), but now
r0 = 1 is not plotted at lag-0 and the lags on the x-axis are displayed correctly
as integers.

Before we move on to the PACF, let’s look at the ACF for some deter-
ministic time series, which will help you identify interesting properties (e.g.,
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trends, seasonal effects) in a stochastic time series, and account for them in
time series models–an important topic in this course. First, let’s look at a
straight line.

## length of ts

nn <- 100

## create straight line

tt <- seq(nn)

## set up plot area

par(mfrow=c(1,2))

## plot line

plot.ts(tt, ylab=expression(italic(x[t])))

## get ACF

line.acf <- acf(tt, plot=FALSE)

## plot ACF

plot.acf(line.acf)
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Fig. 1.12. Time series plot of a straight line (left) and the correlogram of its ACF
(right).

The correlogram for a straight line is itself a linearly decreasing function over
time (Figure 1.12).

Now let’s examine the ACF for a sine wave and see what sort of pattern
arises.

## create sine wave

tt <- sin(2*pi*seq(nn)/12)

## set up plot area

par(mfrow=c(1,2))

## plot line

plot.ts(tt, ylab=expression(italic(x[t])))
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## get ACF

sine.acf <- acf(tt, plot=FALSE)

## plot ACF

plot.acf(sine.acf)
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Fig. 1.13. Time series plot of a discrete sine wave (left) and the correlogram of its
ACF (right).

Perhaps not surprisingly, the correlogram for a sine wave is itself a sine wave
whose amplitude decreases linearly over time (Figure 1.13).

Now let’s examine the ACF for a sine wave with a linear downward trend
and see what sort of patterns arise.

## create sine wave with trend

tt <- sin(2*pi*seq(nn)/12) - seq(nn)/50

## set up plot area

par(mfrow=c(1,2))

## plot line

plot.ts(tt, ylab=expression(italic(x[t])))

## get ACF

sili.acf <- acf(tt, plot=FALSE)

## plot ACF

plot.acf(sili.acf)

The correlogram for a sine wave with a trend is itself a nonsymmetrical sine
wave whose amplitude and center decrease over time (Figure 1.14).

As we have seen, the ACF is a powerful tool in time series analysis for
identifying important features in the data. As we will see later, the ACF is
also an important diagnostic tool for helping to select the proper order of p
and q in ARMA(p,q) models.
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Fig. 1.14. Time series plot of a discrete sine wave (left) and the correlogram of its
ACF (right).

1.4.2 Partial autocorrelation function (PACF)

The partial autocorrelation function (PACF) measures the linear correlation of
a series {xt} and a lagged version of itself {xt+k} with the linear dependence of
{xt−1,xt−2, . . . ,xt−(k−1)} removed. Recall from lecture that we define the PACF
as

fk =

{
Cor(x1,x0) = r1 if k = 1;
Cor(xk− xk−1

k ,x0− xk−1
0 ) if k ≥ 2;

(1.13)

with

xk−1
k = β1xk−1 + β2xk−2 + · · ·+ βk−1x1; (1.14a)

xk−1
0 = β1x1 + β2x2 + · · ·+ βk−1xk−1. (1.14b)

It’s easy to compute the PACF for a variable in R using the pacf function,
which will automatically plot a correlogram when called by itself (similar to
acf). Let’s look at the PACF for the CO2 data.

## PACF of the CO2 data

pacf(co2, lag.max=36)

The default plot for PACF is a bit better than for ACF, but here is another
plotting function that might be useful.

plot.pacf <- function(PACFobj) {

rr <- PACFobj$acf

kk <- length(rr)

nn <- PACFobj$n.used

plot(seq(kk),rr,type="h",lwd=2,yaxs="i",xaxs="i",
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ylim=c(floor(min(rr)),1),xlim=c(0,kk+1),

xlab="Lag",ylab="PACF",las=1)

abline(h=-1/nn+c(-2,2)/sqrt(nn),lty="dashed",col="blue")

abline(h=0)

}
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Fig. 1.15. Correlogram of the PACF for the observed atmospheric CO2 concentra-
tion at Mauna Loa, Hawai’i obtained with the function pacf.

Notice in Figure 1.15 that the partial autocorrelation at lag-1 is very high (it
equals the ACF at lag-1), but the other values at lags > 1 are relatively small,
unlike what we saw for the ACF. We will discuss this in more detail later on
in this lab.

Notice also that the PACF plot again has real-valued indices for the time
lag, but it does not include any value for lag-0 because it is impossible to
remove any intermediate autocorrelation between t and t− k when k = 0, and
therefore the PACF does not exist at lag-0. If you would like, you can use the
plot.acf function we defined above to plot the PACF estimates because acf

and pacf produce identical list structures (results not shown here).

## PACF of the CO2 data

co2.pacf <- pacf(co2)

## correlogram of the CO2 data

plot.acf(co2.pacf)

As with the ACF, we will see later on how the PACF can also be used to
help identify the appropriate order of p and q in ARMA(p,q) models.

1.4.3 Cross-correlation function (CCF)

Often we are interested in looking for relationships between 2 different time
series. There are many ways to do this, but a simple method is via examination
of their cross-covariance and cross-correlation.
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We begin by defining the sample cross-covariance function (CCVF) in a
manner similar to the ACVF, in that

gxy
k =

1
n

n−k

∑
t=1

(yt − ȳ)(xt+k− x̄) , (1.15)

but now we are estimating the correlation between a variable y and a different
time-shifted variable xt+k. The sample cross-correlation function (CCF) is then
defined analogously to the ACF, such that

rxy
k =

gxy
k√

SDxSDy
; (1.16)

SDx and SDy are the sample standard deviations of {xt} and {yt}, respectively.
It is important to re-iterate here that rxy

k 6= rxy
−k, but rxy

k = ryx
−k. Therefore, it is

very important to pay particular attention to which variable you call y (i.e.,
the “response”) and which you call x (i.e., the “predictor”).

As with the ACF, an approximate 95% confidence interval on the CCF
can be estimated by

−1
n
± 2√

n
(1.17)

where n is the number of data points used in the calculation of the CCF, and
the same assumptions apply to its interpretation.

Computing the CCF in R is easy with the function ccf and it works just
like acf. In fact, ccf is just a“wrapper”function that calls acf. As an example,
let’s examine the CCF between sunspot activity and number of lynx trapped
in Canada as in the classic paper by Moran1.

To begin, let’s get the data, which are conveniently included in the
datasets package included as part of the base installation of R. Before calcu-
lating the CCF, however, we need to find the matching years of data. Again,
we’ll use the ts.intersect function.

## get the matching years of sunspot data

suns <- ts.intersect(lynx,sunspot.year)[,"sunspot.year"]

## get the matching lynx data

lynx <- ts.intersect(lynx,sunspot.year)[,"lynx"]

Here are plots of the time series.

## plot time series

plot(cbind(suns,lynx), yax.flip=TRUE)

It is important to remember which of the 2 variables you call y and x
when calling ccf(x, y, ...). In this case, it seems most relevant to treat

1 Moran, P.A.P. 1949. The statistical analysis of the sunspot and lynx cycles. J.
Anim. Ecol. 18:115-116
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Fig. 1.16. Time series of sunspot activity (top) and lynx trappings in Canada
(bottom) from 1821-1934.

lynx as the y and sunspots as the x, in which case we are mostly interested in
the CCF at negative lags (i.e., when sunspot activity predates inferred lynx
abundance). Furthermore, we’ll use log-transformed lynx trappings.

## CCF of sunspots and lynx

ccf(suns, log(lynx), ylab="Cross-correlation")

From Figures 1.16 and 1.17 it looks like lynx numbers are relatively low
3-5 years after high sunspot activity (i.e., significant correlation at lags of -3
to -5).

1.5 White noise (WN)

A time series {wt} is a discrete white noise series (DWN) if the w1,w1, . . . ,wt are
independent and identically distributed (IID) with a mean of zero. For most of
the examples in this course we will assume that the wt ∼N(0,q), and therefore
we refer to the time series {wt} as Gaussian white noise. If our time series
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Fig. 1.17. CCF for annual sunspot activity and the log of the number of lynx
trappings in Canada from 1821-1934.

model has done an adequate job of removing all of the serial autocorrelation
in the time series with trends, seasonal effects, etc., then the model residuals
(et = yt− ŷt) will be a WN sequence with the following properties for its mean
(ē), covariance (ck), and autocorrelation (rk):

x̄ = 0

ck = Cov(et ,et+k) =

{
q if k = 0
0 if k 6= 1

rk = Cor(et ,et+k) =

{
1 if k = 0
0 if k 6= 1.

(1.18)

1.5.1 Simulating white noise

Simulating WN in R is straightforward with a variety of built-in random num-
ber generators for continuous and discrete distributions. Once you know R’s
abbreviation for the distribution of interest, you add an r to the beginning
to get the function’s name. For example, a Gaussian (or normal) distribution
is abbreviated norm and so the function is rnorm. All of the random number
functions require two things: the number of samples from the distribution (n),
and the parameters for the distribution itself (e.g., mean & SD of a normal).
Check the help file for the distribution of interest to find out what parameters
you must specify (e.g., type ?rnorm to see the help for a normal distribution).

Here’s how to generate 100 samples from a normal distribution with mean
of 5 and standard deviation of 0.2, and 50 samples from a Poisson distribution
with a rate (λ) of 20.

set.seed(123)

## random normal variates
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GWN <- rnorm(n=100, mean=5, sd=0.2)

## random Poisson variates

PWN <- rpois(n=50, lambda=20)

Here are plots of the time series. Notice that on one occasion the same num-
ber was drawn twice in a row from the Poisson distribution, which is discrete.
That is virtually guaranteed to never happen with a continuous distribution.

## set up plot region

par(mfrow=c(1,2))

## plot normal variates with mean

plot.ts(GWN)

abline(h=5, col="blue", lty="dashed")

## plot Poisson variates with mean

plot.ts(PWN)

abline(h=20, col="blue", lty="dashed")
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Fig. 1.18. Time series plots of simulated Gaussian (left) and Poisson (right) white
noise.

Now let’s examine the ACF for the 2 white noise series and see if there is,
in fact, zero autocorrelation for lags ≥ 1.

## set up plot region

par(mfrow=c(1,2))

## plot normal variates with mean

acf(GWN, main="", lag.max=20)

## plot Poisson variates with mean

acf(PWN, main="", lag.max=20)

Interestingly, the rk are all greater than zero in absolute value although
they are not statistically different from zero for lags 1-20. This is because we
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Fig. 1.19. ACF’s for the simulated Gaussian (left) and Poisson (right) white noise
shown in Figure 1.18.

are dealing with a sample of the distributions rather than the entire population
of all random variates. As an exercise, try setting n=1e6 instead of n=100 or
n=50 in the calls calls above to generate the WN sequences and see what
effect it has on the estimation of rk. It is also important to remember, as we
discussed earlier, that we should expect that approximately 1 in 20 of the rk
will be statistically greater than zero based on chance alone, especially for
relatively small sample sizes, so don’t get too excited if you ever come across
a case like then when inspecting model residuals.

1.6 Random walks (RW)

Random walks receive considerable attention in time series analyses because
of their ability to fit a wide range of data despite their surprising simplicity.
In fact, random walks are the most simple non-stationary time series model.
A random walk is a time series {xt} where

xt = xt−1 + wt , (1.19)

and wt is a discrete white noise series where all values are independent and
identically distributed (IID) with a mean of zero. In practice, we will almost
always assume that the wt are Gaussian white noise, such that wt ∼ N(0,q).
We will see later that a random walk is a special case of an autoregressive
model.

1.6.1 Simulating a random walk

Simulating a RW model in R is straightforward with a for loop and the use of
rnorm to generate Gaussian errors (type ?rnorm to see details on the function
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and its useful relatives dnorm and pnorm). Let’s create 100 obs (we’ll also set
the random number seed so everyone gets the same results).

## set random number seed

set.seed(123)

## length of time series

TT <- 100

## initialize {x_t} and {w_t}

xx <- ww <- rnorm(n=TT, mean=0, sd=1)

## compute values 2 thru TT

for(t in 2:TT) { xx[t] <- xx[t-1] + ww[t] }

Now let’s plot the simulated time series and its ACF.

## setup plot area

par(mfrow=c(1,2))

## plot line

plot.ts(xx, ylab=expression(italic(x[t])))

## plot ACF

plot.acf(acf(xx, plot=FALSE))
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Fig. 1.20. Simulated time series of a random walk model (left) and its associated
ACF (right).

Perhaps not surprisingly based on their names, autoregressive models such as
RW’s have a high degree of autocorrelation out to long lags (Figure 1.20).

1.6.2 Alternative formulation of a random walk

As an aside, let’s use an alternative formulation of a random walk model to
see an even shorter way to simulate an RW in R. Based on our definition of a
random walk in Equation (1.19), it is easy to see that
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xt = xt−1 + wt

xt−1 = xt−2 + wt−1

xt−2 = xt−3 + wt−2

...

(1.20)

Therefore, if we substitute xt−2 + wt−1 for xt−1 in the first equation, and then
xt−3 + wt−2 for xt−2, and so on in a recursive manner, we get

xt = wt + wt−1 + wt−2 + · · ·+ wt−∞ + xt−∞. (1.21)

In practice, however, the time series will not start an infinite time ago, but
rather at some t = 1, in which case we can write

xt = w1 + w2 + · · ·+ wt

=
T

∑
t=1

wt .
(1.22)

From Equation (1.22) it is easy to see that the value of an RW process at
time step t is the sum of all the random errors up through time t. Therefore, in
R we can easily simulate a realization from an RW process using the cumsum(x)
function, which does cumulative summation of the vector x over its entire
length. If we use the same errors as before, we should get the same results.

## simulate RW

x2 <- cumsum(ww)

Let’s plot both time series to see if it worked.

## setup plot area

par(mfrow=c(1,2))

## plot 1st RW

plot.ts(xx, ylab=expression(italic(x[t])))

## plot 2nd RW

plot.ts(x2, ylab=expression(italic(x[t])))

Indeed, both methods of generating a RW time series appear to be equivalent.

1.7 Autoregressive (AR) models

Autoregressive models of order p, abbreviated AR(p), are commonly used
in time series analyses. In particular, AR(1) models (and their multivariate
extensions) see considerable use in ecology as we will see later in the course.
Recall from lecture that an AR(p) model is written as

xt = φ1xt−1 + φ2xt−2 + · · ·+ φpxt−p + wt , (1.23)
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Fig. 1.21. Time series of the same random walk model formulated as Equation
(1.19) and simulated via a for loop (left), and as Equation (1.22) and simulated via
cumsum (right).

where {wt} is a white noise sequence with zero mean and some variance σ2.
For our purposes we usually assume that wt ∼N(0,q). Note that the random
walk in Equation (1.19) is a special case of an AR(1) model where φ1 = 1 and
φk = 0 for k ≥ 2.

1.7.1 Simulating an AR(p) process

Although we could simulate an AR(p) process in R using a for loop just as we
did for a random walk, it’s much easier with the function arima.sim, which
works for all forms and subsets of ARIMA models. To do so, remember that
the AR in ARIMA stands for “autoregressive”, the I for “integrated”, and the
MA for“moving-average”; we specify the order of ARIMA models as p,d,q. So,
for example, we would specify an AR(2) model as ARIMA(2,0,0), or an MA(1)
model as ARIMA(0,0,1). If we had an ARMA(3,1) model that we applied to
data that had been twice-differenced, then we would have an ARIMA(3,2,1)
model.

arima.sim will accept many arguments, but we are interested primarily in
two of them: n and model (type ?arima.sim to learn more). The former simply
indicates the length of desired time series, but the latter is more complex.
Specifically, model is a list with the following elements:

order a vector of length 3 containing the ARIMA(p,d,q) order
ar a vector of length p containing the AR(p) coefficients
ma a vector of length q containing the MA(q) coefficients
sd a scalar indicating the std dev of the Gaussian errors

Note that you can omit the ma element entirely if you have an AR(p) model, or
omit the ar element if you have an MA(q) model. If you omit the sd element,
arima.sim will assume you want normally distributed errors with SD = 1.
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Also note that you can pass arima.sim your own time series of random errors
or the name of a function that will generate the errors (e.g., you could use
rpois if you wanted a model with Poisson errors). Type ?arima.sim for more
details.

Let’s begin by simulating some AR(1) models and comparing their behav-
ior. First, let’s choose models with contrasting AR coefficients. Recall that in
order for an AR(1) model to be stationary, φ < |1|, so we’ll try 0.1 and 0.9.
We’ll again set the random number seed so we will get the same answers.

set.seed(456)

## list description for AR(1) model with small coef

AR.sm <- list(order=c(1,0,0), ar=0.1, sd=0.1)

## list description for AR(1) model with large coef

AR.lg <- list(order=c(1,0,0), ar=0.9, sd=0.1)

## simulate AR(1)

AR1.sm <- arima.sim(n=50, model=AR.sm)

AR1.lg <- arima.sim(n=50, model=AR.lg)

Now let’s plot the 2 simulated series.

## setup plot region

par(mfrow=c(1,2))

## get y-limits for common plots

ylm <- c(min(AR1.sm,AR1.lg), max(AR1.sm,AR1.lg))

## plot the ts

plot.ts(AR1.sm, ylim=ylm,

ylab=expression(italic(x)[italic(t)]),

main=expression(paste(phi," = 0.1")))

plot.ts(AR1.lg, ylim=ylm,

ylab=expression(italic(x)[italic(t)]),

main=expression(paste(phi," = 0.9")))

What do you notice about the two plots in Figure 1.22? It looks like the
time series with the smaller AR coefficient is more “choppy” and seems to stay
closer to 0 whereas the time series with the larger AR coefficient appears to
wander around more. Remember that as the coefficient in an AR(1) model goes
to 0, the model approaches a WN sequence, which is stationary in both the
mean and variance. As the coefficient goes to 1, however, the model approaches
a random walk, which is not stationary in either the mean or variance.

Next, let’s generate two AR(1) models that have the same magnitude
coeficient, but opposite signs, and compare their behavior.

set.seed(123)

## list description for AR(1) model with small coef

AR.pos <- list(order=c(1,0,0), ar=0.5, sd=0.1)

## list description for AR(1) model with large coef

AR.neg <- list(order=c(1,0,0), ar=-0.5, sd=0.1)
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Fig. 1.22. Time series of simulated AR(1) processes with φ = 0.1 (left) and φ = 0.9
(right).

## simulate AR(1)

AR1.pos <- arima.sim(n=50, model=AR.pos)

AR1.neg <- arima.sim(n=50, model=AR.neg)

OK, let’s plot the 2 simulated series.

## setup plot region

par(mfrow=c(1,2))

## get y-limits for common plots

ylm <- c(min(AR1.pos,AR1.neg), max(AR1.pos,AR1.neg))

## plot the ts

plot.ts(AR1.pos, ylim=ylm,

ylab=expression(italic(x)[italic(t)]),

main=expression(paste(phi[1]," = 0.5")))

plot.ts(AR1.neg,

ylab=expression(italic(x)[italic(t)]),

main=expression(paste(phi[1]," = -0.5")))

Now it appears like both time series vary around the mean by about the same
amount, but the model with the negative coefficient produces a much more
“sawtooth” time series. It turns out that any AR(1) model with −1 < φ < 0
will exhibit the 2-point oscillation you see here.

We can simulate higher order AR(p) models in the same manner, but care
must be exercised when choosing a set of coefficients that result in a stationary
model or else arima.sim will fail and report an error. For example, an AR(2)
model with both coefficients equal to 0.5 is not stationary, and therefore this
function call will not work:

arima.sim(n=100, model=list(order(2,0,0), ar=c(0.5,0.5)))

If you try, R will respond that the“'ar' part of model is not stationary”.
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Fig. 1.23. Time series of simulated AR(1) processes with φ1 = 0.5 (left) and φ1 =
−0.5 (right).

1.7.2 Correlation structure of AR(p) processes

Let’s review what we learned in lecture about the general behavior of the ACF
and PACF for AR(p) models. To do so, we’ll simulate four stationary AR(p)
models of increasing order p and then examine their ACF’s and PACF’s. Let’s
use a really big n so as to make them “pure”, which will provide a much better
estimate of the correlation structure.

set.seed(123)

## the 4 AR coefficients

ARp <- c(0.7, 0.2, -0.1, -0.3)

## empty list for storing models

AR.mods <- list()

## loop over orders of p

for(p in 1:4) {

## assume SD=1, so not specified

AR.mods[[p]] <- arima.sim(n=10000, list(ar=ARp[1:p]))

}

Now that we have our four AR(p) models, lets look at plots of the time
series, ACF’s, and PACF’s.

## set up plot region

par(mfrow=c(4,3))

## loop over orders of p

for(p in 1:4) {

plot.ts(AR.mods[[p]][1:50],

ylab=paste("AR(",p,")",sep=""))

acf(AR.mods[[p]], lag.max=12)

pacf(AR.mods[[p]], lag.max=12, ylab="PACF")

}
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Fig. 1.24. Time series of simulated AR(p) processes (left column) of increasing
orders from 1-4 (rows) with their associated ACF’s (center column) and PACF’s
(right column). Note that only the first 50 values of xt are plotted.

As we saw in lecture and is evident from our examples shown in Figure 1.24,
the ACF for an AR(p) process tails off toward zero very slowly, but the PACF
goes to zero for lags > p. This is an important diagnostic tool when trying to
identify the order of p in ARMA(p,q) models.
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1.8 Moving-average (MA) models

A moving-averge process of order q, or MA(q), is a weighted sum of the current
random error plus the q most recent errors, and can be written as

xt = wt + θ1wt−1 + θ2wt−2 + · · ·+ θqwt−q, (1.24)

where {wt} is a white noise sequence with zero mean and some variance σ2; for
our purposes we usually assume that wt ∼ N(0,q). Of particular note is that
because MA processes are finite sums of stationary errors, they themselves
are stationary.

Of interest to us are so-called “invertible” MA processes that can be ex-
pressed as an infinite AR process with no error term. The term invertible
comes from the inversion of the backshift operator (B) that we discussed
in class (i.e., Bxt = xt−1). So, for example, an MA(1) process with θ < |1| is
invertible because it can be written using the backshift operator as

xt = wt −θwt−1

xt = wt −θBwt

xt = (1−θB)wt ,

⇓

wt =
1

(1−θB)
xt

wt = (1 + θB + θ
2B2 + θ

3B3 + . . .)xt

wt = xt + θxt−1 + θ
2xt−2 + θ

3xt−3 + . . .

(1.25)

1.8.1 Simulating an MA(q) process

We can simulate MA(q) processes just as we did for AR(p) processes using
arima.sim. Here are 3 different ones with contrasting θ’s:

set.seed(123)

## list description for MA(1) model with small coef

MA.sm <- list(order=c(0,0,1), ma=0.2, sd=0.1)

## list description for MA(1) model with large coef

MA.lg <- list(order=c(0,0,1), ma=0.8, sd=0.1)

## list description for MA(1) model with large coef

MA.neg <- list(order=c(0,0,1), ma=-0.5, sd=0.1)

## simulate MA(1)

MA1.sm <- arima.sim(n=50, model=MA.sm)

MA1.lg <- arima.sim(n=50, model=MA.lg)

MA1.neg <- arima.sim(n=50, model=MA.neg)

with their associated plots.
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## setup plot region

par(mfrow=c(1,3))

## plot the ts

plot.ts(MA1.sm,

ylab=expression(italic(x)[italic(t)]),

main=expression(paste(theta," = 0.2")))

plot.ts(MA1.lg,

ylab=expression(italic(x)[italic(t)]),

main=expression(paste(theta," = 0.8")))

plot.ts(MA1.neg,

ylab=expression(italic(x)[italic(t)]),

main=expression(paste(theta," = -0.5")))
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Fig. 1.25. Time series of simulated MA(1) processes with θ = 0.2 (left), θ = 0.8
(middle), and θ =−0.5 (right).

In contrast to AR(1) processes, MA(1) models do not exhibit radically
different behavior with changing θ. This should not be too surprising given
that they are simply linear combinations of white noise.

1.8.2 Correlation structure of MA(q) processes

We saw in lecture and above how the ACF and PACF have distinctive features
for AR(p) models, and they do for MA(q) models as well. Here are examples
of four MA(q) processes. As before, we’ll use a really big n so as to make them
“pure”, which will provide a much better estimate of the correlation structure.

set.seed(123)

## the 4 MA coefficients

MAq <- c(0.7, 0.2, -0.1, -0.3)

## empty list for storing models
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MA.mods <- list()

## loop over orders of q

for(q in 1:4) {

## assume SD=1, so not specified

MA.mods[[q]] <- arima.sim(n=1000, list(ma=MAq[1:q]))

}

Now that we have our four MA(q) models, lets look at plots of the time
series, ACF’s, and PACF’s.

## set up plot region

par(mfrow=c(4,3))

## loop over orders of q

for(q in 1:4) {

plot.ts(MA.mods[[q]][1:50],

ylab=paste("MA(",q,")",sep=""))

acf(MA.mods[[q]], lag.max=12)

pacf(MA.mods[[q]], lag.max=12, ylab="PACF")

}

Note very little qualitative difference in the realizations of the four MA(q)
processes (Figure 1.26). As we saw in lecture and is evident from our examples
here, however, the ACF for an MA(q) process goes to zero for lags > q, but
the PACF tails off toward zero very slowly. This is an important diagnostic
tool when trying to identify the order of q in ARMA(p,q) models.

1.9 Autoregressive moving-average (ARMA) models

ARMA(p,q) models have a rich history in the time series literature, but they
are not nearly as common in ecology as plain AR(p) models. As we discussed in
lecture, both the ACF and PACF are important tools when trying to identify
the appropriate order of p and q. Here we will see how to simulate time series
from AR(p), MA(q), and ARMA(p,q) processes, as well as fit time series
models to data based on insights gathered from the ACF and PACF.

We can write an ARMA(p,q) as a mixture of AR(p) and MA(q) models,
such that

xt = φ1xt−1 + φ2xt−2 + · · ·+ φpxt−p + wt + θwt−1 + θ2wt−2 + · · ·+ θqxt−q, (1.26)

and the wt are white noise.

1.9.1 Fitting ARMA(p,q) models with arima

We have already seen how to simulate AR(p) and MA(q) models with
arima.sim; the same concepts apply to ARMA(p,q) models and therefore
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Fig. 1.26. Time series of simulated MA(q) processes (left column) of increasing
orders from 1-4 (rows) with their associated ACF’s (center column) and PACF’s
(right column). Note that only the first 50 values of xt are plotted.

we will not do that here. Instead, we will move on to fitting ARMA(p,q)
models when we only have a realization of the process (i.e., data) and do not
know the underlying parameters that generated it.

The function arima accepts a number of arguments, but two of them are
most important:

x a univariate time series
order a vector of length 3 specifying the order of ARIMA(p,d,q) model
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In addition, note that by default arima will estimate an underlying mean of
the time series unless d > 0. For example, an AR(1) process with mean µ would
be written

xt = µ + φ(xt−1−µ)+ wt . (1.27)

If you know for a fact that the time series data have a mean of zero (e.g., you
already subtracted the mean from them), you should include the argument
include.mean=FALSE, which is set to TRUE by default. Note that ignoring and
not estimating a mean in ARMA(p,q) models when one exists will bias the
estimates of all other parameters.

Let’s see an example of how arima works. First we’ll simulate an ARMA(2,2)
model and then estimate the parameters to see how well we can recover them.
In addition, we’ll add in a constant to create a non-zero mean, which arima

reports as intercept in its output.

set.seed(123)

## ARMA(2,2) description for arim.sim()

ARMA22 <- list(order=c(2,0,2), ar=c(-0.7,0.2), ma=c(0.7,0.2))

## mean of process

mu <- 5

## simulated process (+ mean)

ARMA.sim <- arima.sim(n=10000, model=ARMA22) + mu

## estimate parameters

arima(x=ARMA.sim, order=c(2,0,2))

Call:

arima(x = ARMA.sim, order = c(2, 0, 2))

Coefficients:

ar1 ar2 ma1 ma2 intercept

-0.7079 0.1924 0.6912 0.2001 4.9975

s.e. 0.0291 0.0284 0.0289 0.0236 0.0125

sigma^2 estimated as 0.9972: log likelihood = -14175.92, aic = 28363.84

It looks like we were pretty good at estimating the true parameters, but
our sample size was admittedly quite large (the estimate of the variance of
the process errors is reported as sigma^2 below the other coefficients). As an
exercise, try decreasing the length of time series in the arima.sim call above
from 10,000 to something like 100 and see what effect it has on the parameter
estimates.

1.9.2 Searching over model orders

In an ideal situation, you could examine the ACF and PACF of the time
series of interest and immediately decipher what orders of p and q must have
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generated the data, but that doesn’t always work in practice. Instead, we are
often left with the task of searching over several possible model forms and
seeing which of them provides the most parsimonious fit to the data. There
are two easy ways to do this for ARIMA models in R. The first is to write a
little script that loops ove the possible dimensions of p and q. Let’s try that
for the process we simulated above and search over orders of p and q from
0-3 (it will take a few moments to run and will likely report an error about a
“possible convergence problem”, which you can ignore).

## empty list to store model fits

ARMA.res <- list()

## set counter

cc <- 1

## loop over AR

for(p in 0:3) {

## loop over MA

for(q in 0:3) {

ARMA.res[[cc]] <- arima(x=ARMA.sim,order=c(p,0,q))

cc <- cc + 1

}

}

## get AIC values for model evaluation

ARMA.AIC <- sapply(ARMA.res,function(x) x$aic)

## model with lowest AIC is the best

ARMA.res[[which(ARMA.AIC==min(ARMA.AIC))]]

Call:

arima(x = ARMA.sim, order = c(p, 0, q))

Coefficients:

ar1 ar2 ma1 ma2 intercept

-0.7079 0.1924 0.6912 0.2001 4.9975

s.e. 0.0291 0.0284 0.0289 0.0236 0.0125

sigma^2 estimated as 0.9972: log likelihood = -14175.92, aic = 28363.84

It looks like our search worked, so let’s look at the other method for fitting
ARIMA models. The auto.arima function in the package forecast will con-
duct an automatic search over all possible orders of ARIMA models that you
specify. For details, type ?auto.arima after loading the package. Let’s repeat
our search using the same criteria.

## (install if necessary) & load forecast pkg

if(!require("forecast")) {

install.packages("forecast")

library("forecast")
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}

## find best ARMA(p,q) model

auto.arima(ARMA.sim, start.p=0, max.p=3, start.q=0, max.q=3)

Series: ARMA.sim

ARIMA(2,0,2) with non-zero mean

Coefficients:

ar1 ar2 ma1 ma2 intercept

-0.7079 0.1924 0.6912 0.2001 4.9975

s.e. 0.0291 0.0284 0.0289 0.0236 0.0125

sigma^2 estimated as 0.9977: log likelihood=-14175.92

AIC=28363.84 AICc=28363.84 BIC=28407.1

We get the same results with an increase in speed and less coding, which is
nice. If you want to see the form for each of the models checked by auto.arima

and their associated AIC values, include the argument trace=1.
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Problems

We have seen how to do a variety of introductory time series analyses with R.
Now it is your turn to apply the information you learned here and in lecture to
complete some analyses. You have been asked by a colleauge to help analyze
some time series data she collected as part of an experiment on the effects of
light and nutrients on the population dynamics of phytoplankton. Specifically,
after controlling for differences in light and temperature, she wants to know
if the natural log of population density can be modeled with some form of
ARMA(p,q) model. The data are expressed as the number of cells per milliliter
recorded every hour for one week beginning at 8:00 AM on December 1, 2014;
you can find them here:

## get phytoplankton data

pp <- "http://faculty.washington.edu/scheuerl/phytoDat.txt"

pDat <- read.table(pp)

Use the information above to do the following:

1.1 Convert pDat, which is a data.frame object, into a ts object. This bit of
code might be useful to get you started:

## what day of 2014 is Dec 1st?

dBegin <- as.Date("2014-12-01")

dayOfYear <- (dBegin - as.Date("2014-01-01") + 1)

1.2 Plot the time series of phytoplankton density and provide a brief descrip-
tion of any notable features.

1.3 Although you do not have the actual measurements for the specific tem-
perature and light regimes used in the experiment, you have been informed
that they follow a regular light/dark period with accompanying warm/cool
temperatures. Thus, estimating a fixed seasonal effect is justifiable. Also,
the instrumentation is precise enough to preclude any systematic change
in measurements over time (i.e., you can assume mt = 0 for all t). Obtain
the time series of the estimated log-density of phytoplankton absent any
hourly effects caused by variation in temperature or light. (Hint: You will
need to do some decomposition.)

1.4 Use diagnostic tools to identify the possible order(s) of ARMA model(s)
that most likely describes the log of population density for this particular
experiment. Note that at this point you should be focusing your analysis
on the results obtained in Question 3.

1.5 Use some form of search to identify what form of ARMA(p,q) model best
describes the log of population density for this particular experiment. Use
what you learned in Question 4 to inform possible orders of p and q. (Hint:
if you use auto.arima, include the additional argument seasonal=FALSE)
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1.6 Write out the best model in the form of Equation (1.26) using the under-
score notation to refer to subscripts (e.g., write x_t for xt). You can round
any parameters/coefficients to the nearest hundreth. (Hint: if the mean of
the time series is not zero, refer to Eqn 1.27 in the lab handout).
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