
1

Linear regression models in matrix form

This chapter shows how to write linear regression models in matrix form.
The purpose is to get you comfortable writing multivariate linear models in
different matrix forms before we start working with time-series versions of
these models. Each matrix form is an equivalent model for the data, but
written in different forms. You do not need to worry which form is better or
worse at this point. Simply get comfortable writing multivariate linear models
in different matrix forms.

We will work with the stackloss dataset available in R. The stackloss

dataset consists of 21 observations on the efficiency of a plant that produces
nitric acid as a function of three explanatory variables: air flow, water temper-
ature and acid concentration. We are going to use just the first 4 datapoints
so that it is easier to write the matrices, but the concepts extend to as many
datapoints as you have

data(stackloss)

dat = stackloss[1:4,] #subsetted first 4 rows

dat

Air.Flow Water.Temp Acid.Conc. stack.loss

1 80 27 89 42

2 80 27 88 37

3 75 25 90 37

4 62 24 87 28

We will start by regressing stack loss against air flow. In R using the lm

function this is

require(stats)

lm(stack.loss ~ Air.Flow, data=dat)

This fits the following model for the i-th measurment:

stack.lossi = α + βairi + ei, where ei ∼ N(0,σ2) (1.1)

2 1 Linear regression

We will write the model for all the measurements together in two different
ways, Form 1 and Form 2.

1.1 Form 1

In this form, we have the explanatory variables in a matrix on the left of our
parameter matrix: 

stack.loss1
stack.loss2
stack.loss3
stack.loss4

=


1 air1
1 air2
1 air3
1 air4

[α

β

]
+


e1
e2
e3
e4

 (1.2)

You should work through the matrix algebra to make sure you understand
why Equation 1.2 is Equation 1.1 for all the i data points together.

We can write the first line of Equation 1.2 succinctly as

y = Zx + e (1.3)

where x are our parameters, y are our response variables, and Z are our
explanatory variables (with a 1 column for the intercept). The lm() func-
tion uses Form 1, and we can recover the Z matrix for Form 1 by using the
model.matrix() function on the output from a lm call:

fit=lm(stack.loss ~ Air.Flow, data=dat)

Z=model.matrix(fit)

Z[1:4,]

(Intercept) Air.Flow

1 1 80

2 1 80

3 1 75

4 1 62

1.1.1 Solving for the parameters*

You will not need to know how to solve linear matrix equations for this course.
This section just shows you what the lm function is doing to give you the
parameters.

Notice that Z is not a square matrix and its inverse does not exist but the
inverse of Z>Z exists—if this is a solveable problem. We can go through the
following steps to solve for x, our parameters α and β.

1.1 Form 1 3

Start with y = Zx + e and multiply by Z> on the left to get

Z>y = Z>Zx + Z>e

Multiply that by (Z>Z)−1 on the left

(Z>Z)−1Z>y = (Z>Z)−1Z>Zx +(Z>Z)−1Z>e

(Z>Z)−1Z>Z equals the identity matrix

(Z>Z)−1Z>y = x +(Z>Z)−1Z>e
Move the x to the right by itself

(Z>Z)−1Z>y− (Z>Z)−1Z>e = x

(1.4)

Let’s assume our errors, the e, are i.i.d. which means that

e∼ MVN

0,


σ2 0 0 0
0 σ2 0 0
0 0 σ2 0
0 0 0 σ2


 (1.5)

This equation means “e is drawn from a multivariate normal distribution with
a variance-covariance matrix that is diagonal with equal variances.” Under
that assumption, the expected value of (Z>Z)−1Z>e is zero. So we can solve
for x as

x = (Z>Z)−1Z>y

Let’s try that with R and compare to what you get with lm:

y=matrix(dat$stack.loss, ncol=1)

Z=cbind(1,dat$Air.Flow) #or use model.matrix() to get Z

solve(t(Z)%*%Z)%*%t(Z)%*%y

[,1]

[1,] -11.6159170

[2,] 0.6412918

coef(lm(stack.loss ~ Air.Flow, data=dat))

(Intercept) Air.Flow

-11.6159170 0.6412918

As you see, you get the same values.

1.1.2 Form 1 with multiple explanatory variables

We can easily extend Form 1 to multiple explanatory variables. Let’s say we
wanted to fit this model:

stack.lossi = α + β1airi + β2wateri + β3acidi + ei (1.6)

With lm, we can fit this with

4 1 Linear regression

fit1.mult=lm(stack.loss ~ Air.Flow + Water.Temp + Acid.Conc., data=dat)

Written in matrix form (Form 1), this is
stack.loss1
stack.loss2
stack.loss3
stack.loss4

=


1 air1 water1 acid1
1 air2 water2 acid2
1 air3 water3 acid3
1 air4 water4 acid4




α

β1
β2
β3

+


e1
e2
e3
e4

 (1.7)

Now Z is a matrix with 4 columns and x is a column vector with 4 rows. We
can show the Z matrix again directly from our lm fit:

Z=model.matrix(fit1.mult)

Z

(Intercept) Air.Flow Water.Temp Acid.Conc.

1 1 80 27 89

2 1 80 27 88

3 1 75 25 90

4 1 62 24 87

attr(,"assign")

[1] 0 1 2 3

We can solve for x just like before and compare to what we get with lm:

y=matrix(dat$stack.loss, ncol=1)

Z=cbind(1,dat$Air.Flow, dat$Water.Temp, dat$Acid.Conc)

#or Z=model.matrix(fit2)

solve(t(Z)%*%Z)%*%t(Z)%*%y

[,1]

[1,] -524.904762

[2,] -1.047619

[3,] 7.619048

[4,] 5.000000

coef(fit1.mult)

(Intercept) Air.Flow Water.Temp Acid.Conc.

-524.904762 -1.047619 7.619048 5.000000

Take a look at the Z we made in R. It looks exactly like what is in our model
written in matrix form (Equation 1.7).

1.1.3 When does Form 1 arise?

This form of writing a regression model will come up when you work with
dynamic linear models (DLMs). With DLMs, you will be fitting models of the
form yt = Ztxt +et . In these models you have multiple y at regular time points
and you allow your regression parameters, the x, to evolve through time as a
random walk.

1.2 Form 2 5

1.1.4 Form 1b: The transpose of Form 1

We could also write Form 1 as follows:[
stack.loss1 stack.loss2 stack.loss3 stack.loss4

]
=

[
α β1 β2 β3

]
1 1 1 1

air1 air2 air3 air4
wind1 wind2 wind3 wind4
acid1 acid2 acid3 acid4

+
[
e1 e2 e3 e4

] (1.8)

This is just the transpose of Form 1. Work through the matrix algebra to
make sure you understand why Equation 1.8 is Equation 1.1 for all the i data
points together and why it is equal to the transpose of Equation 1.2. You’ll
need the relationship (AB)> = B>A>.

Let’s write Equation 1.8 as y = Dd, where D contains our parameters. Then
we can solve for D following the steps in Equation 1.4 but multiplying from
the right instead of from the left. See if you can work through the steps to
show that d = yd>(dd>)−1.

y=matrix(dat$stack.loss, nrow=1)

d=rbind(1, dat$Air.Flow, dat$Water.Temp, dat$Acid.Conc)

y%*%t(d)%*%solve(d%*%t(d))

[,1] [,2] [,3] [,4]

[1,] -524.9048 -1.047619 7.619048 5

coef(fit1.mult)

(Intercept) Air.Flow Water.Temp Acid.Conc.

-524.904762 -1.047619 7.619048 5.000000

1.2 Form 2

In this form, we have the explanatory variables in a matrix on the right of our
parameter matrix as in Form 1b but we arrange everything a little differently:


stack.loss1
stack.loss2
stack.loss3
stack.loss4

=


α β 0 0 0
α 0 β 0 0
α 0 0 β 0
α 0 0 0 β




1
air1
air2
air3
air4

+


e1
e2
e3
e4

 (1.9)

Work through the matrix algebra to make sure you understand why Equation
1.9 is the same as Equation 1.1 for all the i data points together.

We will write Form 2 succinctly as

y = Zx + e (1.10)

6 1 Linear regression

1.2.1 Form 2 with multiple explanatory variables

The x is a column vector of the explanatory variables. If we have more ex-
planatory variables, we add them to the column vector at the bottom. So if
we had air flow, water temperature and acid concentration as explanatory
variables, x looks like 

1
air1
air2
air3
air4

water1
water2
water3
water4
acid1
acid2
acid3
acid4



(1.11)

Add columns to the Z matrix for each new variable.
α β1 0 0 0 β2 0 0 0 β3 0 0 0
α 0 β1 0 0 0 β2 0 0 0 β3 0 0
α 0 0 β1 0 0 0 β2 0 0 0 β3 0
α 0 0 0 β1 0 0 0 β2 0 0 0 β3

 (1.12)

The number of rows of Z is always n, the number of rows of y, because the
number of rows on the left and right of the equal sign must match. The number
of columns in Z is determined by the size of x. If there is an intercept, there
is a 1 in x. Then each explanatory variable (like air flow and wind) appears n
times. So if the number of explanatory variables is k, the number of columns
in Z is 1 + k×n if there is an intercept term and k×n if there is not.

1.2.2 When does Form 2 arise?

Form 2 is similar to how multivariate time-series models are typically written
for reading by humans (on a whiteboard or paper). In these models, we see
equations like this: 

y1
y2
y3
y4


t

=


βa βb
βa 0.1
βb βa
0 βa

[x1
x2

]
t
+


e1
e2
e3
e4


t

(1.13)

In this case, yt is the set of 4 observations at time t and xt is the set of 2
explanatory variables at time t. The Z is showing how we are modeling the

1.2 Form 2 7

effects of x1 and x2 on the ys. Notice that the effects are not consistent across
the x and y. This model would not be possible to fit with lm but will be easy
to fit with MARSS (and MARSS-Bayes).

1.2.3 Solving for the parameters for Form 2*

You can just skim this section if you want but make sure you carefully look at
the code in 1.2.4. You will need to adapt that for the homework. Though you
will not need any of the math discussed here for the course, this section will
help you practice matrix multiplication and will introduce you to ‘permutation’
matrices which will be handy in many other contexts.

To solve for α and β, we need our parameters in a column matrix like so[
α

β

]
. We do this by rewritting Zx in Equation 1.10 in ‘vec’ form: if Z is a n×m

matrix and x is a matrix with 1 column and m rows, then Zx = (x>⊗In)vec(Z).
The symbol ⊗ means Kronecker product and just ignore it since you’ll never
see it again in our course (or google ’kronecker product’ if you are curious).
The “vec” of a matrix is that matrix rearranged as a single column:

vec

[
1 2
3 4

]
=


1
3
2
4

 (1.14)

Notice how you just take each column one by one and stack them under each
other. In R, the vec is

A=matrix(1:6,nrow=2,byrow=TRUE)

vecA = matrix(A,ncol=1)

In is a n×n identity matrix, a diagonal matrix with all 0s on the off-diagonals
and all 1s on the diagonal. In R, this is simply diag(n).

To show how we solve for α and β, let’s use an example with only 3 data
points so Equation 1.9 becomes:

stack.loss1
stack.loss2
stack.loss3

=

α β 0 0
α 0 β 0
α 0 0 β




1
air1
air2
air3

+

e1
e2
e3

 (1.15)

Using Zx = (x>⊗ In)vec(Z), this means

8 1 Linear regression

α β 0 0
α 0 β 0
α 0 0 β




1
air1
air2
air3

=
([

1 air1 air2 air3
]
⊗

1 0 0
0 1 0
0 0 1

)



α

α

α

β

0
0
0
β

0
0
0
β



(1.16)

We need to rewrite the vec(Z) as a ‘permutation’ matrix times
[

α

β

]
:

α

α

α

β

0
0
0
β

0
0
0
β



=



1 0
1 0
1 0
0 1
0 0
0 0
0 0
0 1
0 0
0 0
0 0
0 1



[
α

β

]
= Pp (1.17)

where P is the permutation matrix and p =
[

α

β

]
. Thus,

y = Zx + e = (x>⊗ In)P
[

α

β

]
= Mp + e (1.18)

where M = (x>⊗ In)P. We can solve for p, the parameters, using

(M>M)−1M>y

as before.

1.2.4 Code to solve for parameters in Form 2

In the homework, you will use the R code in this section to solve for the
parameters in Form 2. Later when you are fitting multivariate time-series
models, you will not solve for parameters this way but you will need to both
construct Z matrices in R and read Z matrices. The homework will give you
practice creating Z matrices in R.

1.3 Groups of intercepts 9

#make your y and x matrices

y=matrix(dat$stack.loss, ncol=1)

x=matrix(c(1,dat$Air.Flow),ncol=1)

#make the Z matrix

require(MARSS)

n=nrow(dat) #number of rows in our data file

k=1

#Z has n rows and 1 col for intercept, and n cols for the n air data points

#a list matrix allows us to combine "characters" and numbers

Z=matrix(list(0),n,k*n+1)

Z[,1]="alpha"

diag(Z[1:n,1+1:n])="beta"

#this function creates that permutation matrix for you

P=MARSS:::convert.model.mat(Z)$free[,,1]

M=kronecker(t(x),diag(n))%*%P

solve(t(M)%*%M)%*%t(M)%*%y

[,1]

alpha -11.6159170

beta 0.6412918

coef(lm(dat$stack.loss ~ dat$Air.Flow))

(Intercept) dat$Air.Flow

-11.6159170 0.6412918

Go through this code line by line at the R command line. Look at Z. It
is a list matrix that allows you to combine numbers (the 0s) with charac-
ter string (names of parameters). Look at the permutation matrix P. Try
MARSS:::convert.model.mat(Z)$free and see that it returns a 3D matrix,
which is why the [,,1] appears (to get us a 2D matrix). To use more data
points, you can redefine dat to say dat=stackloss to use all 21 data points.

1.3 Groups of intercepts

Let’s say that the odd numbered plants are in the north and the even num-
bered are in the south. We want to include this as a factor in our model that
affects the intercept. Let’s go back to just having air flow be our explanatory
variable. Now if the plant is in the north our model is

stack.lossi = αn + βairi + ei, where ei ∼ N(0,σ2) (1.19)

If the plant is in the south, our model is

stack.lossi = αs + βairi + ei, where ei ∼ N(0,σ2) (1.20)

We’ll add north/south as a factor called ‘reg’ (region) to our dataframe:

10 1 Linear regression

dat = cbind(dat, reg=rep(c("n","s"),n)[1:n])

dat

Air.Flow Water.Temp Acid.Conc. stack.loss reg

1 80 27 89 42 n

2 80 27 88 37 s

3 75 25 90 37 n

4 62 24 87 28 s

And we can easily fit this model with lm.

fit2 = lm(stack.loss ~ -1 + Air.Flow + reg, data=dat)

coef(fit2)

Air.Flow regn regs

0.5358166 -2.0257880 -5.5429799

The -1 is added to the lm call to get rid of α. We just want the αn and αs
intercepts coming from our regions.

1.3.1 North/South intercepts in Form 1

Written in matrix form, Form 1 for this model is
stack.loss1
stack.loss2
stack.loss3
stack.loss4

=


air1 1 0
air2 0 1
air3 1 0
air4 0 1


 β

αn
αs

+


e1
e2
e3
e4

 (1.21)

Notice that odd plants get αn and even plants get αs. Use model.matrix()

to see that this is the Z matrix that lm formed. Notice the matrix output by
model.matrix looks exactly like Z in Equation 1.21.

Z=model.matrix(fit2)

Z[1:4,]

Air.Flow regn regs

1 80 1 0

2 80 0 1

3 75 1 0

4 62 0 1

We can solve for the parameters using x = (Z>Z)−1Z>y as we did for Form
1 before by adding on the 1s and 0s columns we see in the Z matrix in Equation
1.21. We could build this Z using the following R code:

Z=cbind(dat$Air.Flow,c(1,0,1,0),c(0,1,0,1))

colnames(Z)=c("beta","regn","regs")

1.3 Groups of intercepts 11

Or just use model.matrix(). This will save time when models are more com-
plex.

Z=model.matrix(fit2)

Z[1:4,]

Air.Flow regn regs

1 80 1 0

2 80 0 1

3 75 1 0

4 62 0 1

Now we can solve for the parameters:

y=matrix(dat$stack.loss, ncol=1)

solve(t(Z)%*%Z)%*%t(Z)%*%y

[,1]

Air.Flow 0.5358166

regn -2.0257880

regs -5.5429799

Compare to the output from lm and you will see it is the same.

coef(fit2)

Air.Flow regn regs

0.5358166 -2.0257880 -5.5429799

1.3.2 North/South intercepts in Form 2

We would write this model in Form 2 as
stack.loss1
stack.loss2
stack.loss3
stack.loss4

=


αn β 0 0 0
αs 0 β 0 0
αn 0 0 β 0
αs 0 0 0 β




1
air1
air2
air3
air4

+


e1
e2
e3
e4

= Zx + e (1.22)

To estimate the parameters, we need to be able to write a list matrix that
looks like Z in Equation 1.22. We can use the same code we used in Section
1.2.4 with Z changed to look like that in Equation 1.22.

y=matrix(dat$stack.loss, ncol=1)

x=matrix(c(1,dat$Air.Flow),ncol=1)

n=nrow(dat)

k=1

#list matrix allows us to combine numbers and character strings

Z=matrix(list(0),n,k*n+1)

12 1 Linear regression

Z[seq(1,n,2),1]="alphanorth"

Z[seq(2,n,2),1]="alphasouth"

diag(Z[1:n,1+1:n])="beta"

P=MARSS:::convert.model.mat(Z)$free[,,1]

M=kronecker(t(x),diag(n))%*%P

solve(t(M)%*%M)%*%t(M)%*%y

[,1]

alphanorth -2.0257880

alphasouth -5.5429799

beta 0.5358166

Make sure you understand the code used to form the Z matrix. Also notice
that class(Z[1,3])="numeric" while class(Z[1,2])="character". This is
important. 0 in R is a number while "0" would be a character (the name of a
parameter).

1.4 Groups of β’s

Now let’s say that the plants have different owners, Sue and Aneesh, and we
want to have β for the air flow effect vary by owner. If the plant is in the north
and owned by Sue, the model is

stack.lossi = αn + βsairi + ei, where ei ∼ N(0,σ2) (1.23)

If it is in the south and owned by Aneesh, the model is

stack.lossi = αs + βaairi + ei, where ei ∼ N(0,σ2) (1.24)

You get the idea.
Now we need to add an operator variable as a factor in our stackloss

dataframe. Plants 1,3 are run by Sue and plants 2,4 are run by Aneesh.

dat = cbind(dat, owner=c("s","a"))

dat

Air.Flow Water.Temp Acid.Conc. stack.loss reg owner

1 80 27 89 42 n s

2 80 27 88 37 s a

3 75 25 90 37 n s

4 62 24 87 28 s a

Since the operator names can be replicated the length of our data set, R fills
in the operator colmun by replicating our string of operator names to the right
length, conveniently (or alarmingly).

We can easily fit this model with lm using the “:” notation.

1.4 Groups of β’s 13

coef(lm(stack.loss ~ -1 + Air.Flow:owner + reg, data=dat))

regn regs Air.Flow:ownera

-38.0 -3.0 0.5

Air.Flow:owners

1.0

Notice that we have 4 datapoints and are estimating 4 parameters. We are
not going to be able to estimate any more parameters than data points. If
we want to estimate any more, we’ll need to use the fuller stackflow dataset
(which has 21 data points).

1.4.1 Owner β’s in Form 1

Written in Form 1, this model is
stack.loss1
stack.loss2
stack.loss3
stack.loss4

=


1 0 0 air1
0 1 air2 0
1 0 0 air3
0 1 air4 0




αn
αs
βa
βs

+


e1
e2
e3
e4

= Zx + e (1.25)

The air data have been written to the right of the 1s and 0s for north/south
intercepts because that is how lm writes this model in Form 1 and I want to
duplicate that (for teaching purposes). Also the β’s are ordered to be alpha-
betical because lm writes the Z matrix like that.

Now our model is more complicated and using model.matrix to get our
Z saves us a lot tedious matrix building.

fit3=lm(stack.loss ~ -1 + Air.Flow:owner + reg, data=dat)

Z=model.matrix(fit3)

Z[1:4,]

regn regs Air.Flow:ownera Air.Flow:owners

1 1 0 0 80

2 0 1 80 0

3 1 0 0 75

4 0 1 62 0

Notice the matrix output by model.matrix looks exactly like Z in Equation
1.25 (ignore the attributes info). Now we can solve for the parameters:

y=matrix(dat$stack.loss, ncol=1)

solve(t(Z)%*%Z)%*%t(Z)%*%y

[,1]

regn -38.0

regs -3.0

Air.Flow:ownera 0.5

Air.Flow:owners 1.0

Compare to the output from lm and you will see it is the same.

14 1 Linear regression

1.4.2 Owner β’s in Form 2

To write this model in Form 2, we just add subscripts to the β’s in our Form
2 Z matrix:

stack.loss1
stack.loss2
stack.loss3
stack.loss4

=


αn βs 0 0 0
αs 0 βa 0 0
αn 0 0 βs 0
αs 0 0 0 βa




1
air1
air2
air3
air4

+


e1
e2
e3
e4

= Zx + e (1.26)

To estimate the parameters, we change the β’s in our Z list matrix to have
owner designations:

y=matrix(dat$stack.loss, ncol=1)

x=matrix(c(1,dat$Air.Flow),ncol=1)

n=nrow(dat)

k=1

Z=matrix(list(0),n,k*n+1)

Z[seq(1,n,2),1]="alpha.n"

Z[seq(2,n,2),1]="alpha.s"

diag(Z[1:n,1+1:n])=rep(c("beta.s","beta.a"),n)[1:n]

P=MARSS:::convert.model.mat(Z)$free[,,1]

M=kronecker(t(x),diag(n))%*%P

solve(t(M)%*%M)%*%t(M)%*%y

[,1]

alpha.n -38.0

alpha.s -3.0

beta.s 1.0

beta.a 0.5

The parameters estimates are the same, though β’s are given in reversed order
simply due to the way convert.model.mat is ordering the columns in Form
2’s Z.

1.5 Seasonal effect as a factor

Let’s imagine that the data were taken consecutively in time by quarter. We
want to model the seasonal effect as an intercept change. We will drop all
other effects for now. If the data were collected in quarter 1, the model is

stack.lossi = α1 + ei, where ei ∼ N(0,σ2) (1.27)

If collected in quarter 2, the model is

stack.lossi = α2 + ei, where ei ∼ N(0,σ2) (1.28)

1.5 Seasonal effect as a factor 15

etc.
We add a column to our dataframe to account for season:

dat = cbind(dat, qtr=paste(rep("qtr",n),1:4,sep=""))

dat

Air.Flow Water.Temp Acid.Conc. stack.loss reg owner qtr

1 80 27 89 42 n s qtr1

2 80 27 88 37 s a qtr2

3 75 25 90 37 n s qtr3

4 62 24 87 28 s a qtr4

And we can easily fit this model with lm.

coef(lm(stack.loss ~ -1 + qtr, data=dat))

qtrqtr1 qtrqtr2 qtrqtr3 qtrqtr4

42 37 37 28

The -1 is added to the lm call to get rid of α. We just want the α1, α2, etc.
intercepts coming from our quarters.

For comparison look at

coef(lm(stack.loss ~ qtr, data=dat))

(Intercept) qtrqtr2 qtrqtr3 qtrqtr4

42 -5 -5 -14

Why does it look like that when -1 is missing from the lm call? Where did the
intercept for quarter 1 go and why are the other intercepts so much smaller?

1.5.1 Seasonal intercepts written in Form 1

Remembering that lm puts models in Form 1, look at the Z matrix for Form
1:

fit4=lm(stack.loss ~ -1 + qtr, data=dat)

Z=model.matrix(fit4)

Z[1:4,]

qtrqtr1 qtrqtr2 qtrqtr3 qtrqtr4

1 1 0 0 0

2 0 1 0 0

3 0 0 1 0

4 0 0 0 1

Written in Form 1, this model is
stack.loss1
stack.loss2
stack.loss3
stack.loss4

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




α1
α2
α3
α4

+


e1
e2
e3
e4

= Zx + e (1.29)

16 1 Linear regression

Compare to the model that lm is using when the intercept included. What
does this model look like written in matrix form?

fit5=lm(stack.loss ~ qtr, data=dat)

Z=model.matrix(fit5)

Z[1:4,]

(Intercept) qtrqtr2 qtrqtr3 qtrqtr4

1 1 0 0 0

2 1 1 0 0

3 1 0 1 0

4 1 0 0 1

1.5.2 Seasonal intercepts written in Form 2

We do not need to add 1s and 0s to our Z matrix in Form 2; we just add
subscripts to our intercepts like we did when we had north-south intercepts.
In this model, we do not have any explanatory variables (except intercept) so
our x is just a 1×1 matrix:

stack.loss1
stack.loss2
stack.loss3
stack.loss4

=


α1
α2
α3
α4

[1]+


e1
e2
e3
e4

= Zx + e (1.30)

1.6 * Seasonal effect plus other explanatory variables

With our 4 data points, we are limited to estimating 4 parameters. Let’s use
the full 21 data points so we can estimate some more complex models. We’ll
add an owner variable and a quarter variable to the stackloss dataset.

data(stackloss)

fulldat=stackloss

n=nrow(fulldat)

fulldat=cbind(fulldat,

owner=rep(c("sue","aneesh","joe"),n)[1:n],

qtr=paste("qtr",rep(1:4,n)[1:n],sep=""),

reg=rep(c("n","s"),n)[1:n])

Let’s fit a model where there is only an effect of air flow, but that effect
varies by owner and by quarter. We also want a different intercept for each
quarter. So if datapoint i is from quarter j on a plant owned by owner k, the
model is

stack.lossi = α j + β j,kairi + ei (1.31)

So there there are 4×3 β’s (4 quarters and 3 owners) and 4 α’s (4 quarters).
With lm, we fit the model as:

1.6 * Seasonal effect plus other explanatory variables 17

fit7 = lm(stack.loss ~ -1 + qtr + Air.Flow:qtr:owner, data=fulldat)

Take a look at Z for Form 1 using model.matrix(Z). It’s not shown since
it is large:

model.matrix(fit7)

The x will be 

α1
α2
α3
α4
β1,a
β2,a
β3,a
. . .


Take a look at the model matrix that lm is using and make sure you

understand how Zx produces Equation 1.31.

Z=model.matrix(fit7)

For Form 2, our Z size doesn’t change; number of rows is n (the number
data points) and number of columns is 1 (for intercept) plus the number of
explanatory variables times n. So in this case, we only have one explanatory
variable (air flow) so Z has 1+21 columns. To allow the intercept to vary by
quarter, we use α1 in the rows of Z where the data is from quarter 1, use α2
where the data is from quarter 2, etc. Similarly we use the appropriate β j,k
depending on the quarter and owner for that data point.

We could construct Z, x and y for Form 2 using

y=matrix(fulldat$stack.loss, ncol=1)

x=matrix(c(1,fulldat$Air.Flow),ncol=1)

n=nrow(fulldat)

k=1

Z=matrix(list(0),n,k*n+1)

#give the intercepts names based on qtr

Z[,1]=paste(fulldat$qtr)

#give the betas names based on qtr and owner

diag(Z[1:n,1+1:n])=paste("beta",fulldat$qtr,fulldat$owner,sep=".")

P=MARSS:::convert.model.mat(Z)$free[,,1]

M=kronecker(t(x),diag(n))%*%P

solve(t(M)%*%M)%*%t(M)%*%y

Note, the estimates are the same as for lm but are not listed in the same order.
Make sure to look at the Z and x for the models and that you understand

why they look like they do.

18 1 Linear regression

1.7 * Models with confounded parameters

Try adding region as another factor in your model along with quarter and fit
with lm:

coef(lm(stack.loss ~ -1 + Air.Flow + reg + qtr, data=fulldat))

Air.Flow regn regs qtrqtr2 qtrqtr3

1.066524 -49.024320 -44.831760 -3.066094 3.499428

qtrqtr4

NA

The estimate for quarter 1 is gone (actually it was set to 0) and the estimate
for quarter 4 is NA. Look at the Z matrix for Form 1 and see if you can figure
out the problem. Try also writing out the model for the 1st plant and you’ll
see what part of the problem is and why the estimate for quarter 1 is fixed at
0.

fit=lm(stack.loss ~ -1 + Air.Flow + reg + qtr, data=fulldat)

Z=model.matrix(fit)

But why is the estimate for quarter 4 equal to NA? What if the ordering of
north and south regions was different, say 1 through 4 north, 5 through 8
south, 9 through 12 north, etc?

fulldat2=fulldat

fulldat2$reg2 = rep(c("n","n","n","n","s","s","s","s"),3)[1:21]

fit=lm(stack.loss ~ Air.Flow + reg2 + qtr, data=fulldat2)

coef(fit)

(Intercept) Air.Flow reg2s qtrqtr2 qtrqtr3

-45.6158421 1.0407975 -3.5754722 0.7329027 3.0389763

qtrqtr4

3.6960928

Now an estimate for quarter 4 appears.
The problem is two-fold. First by having both region and quarter inter-

cepts, we created models where 2 intercepts appear for one i model and we
cannot estimate both. lm helps us out by setting one of the factor effects to 0.
It will chose the first alphabetically. But as we saw with the model where odd
numbered plants were north and even numbered were south, we can still have
a situation where one of the intercepts is non-identifiable. lm helps us out by
alerting us to the problem by setting one to NA.

Once you start writing your own Jags code or using MARSS, you will
need to make sure that all your parameters are identifiable. If they are not,
your code will simply ‘chase its tail’. The code will generally take forever
to converge or if you did not try different starting conditions, it may look
like it converged but actually the estimates for the confounded parameters

1.7 * Models with confounded parameters 19

are meaningless. So you will need to think carefully about the model you are
fitting and consider if there are multiple parameters measuring the same thing
(for example 2 intercept parameters).

20 1 Linear regression

Problems

For the homework questions, we will using part of the airquality data set
in R. Load that as

library(datasets)

data(airquality)

#remove any rows with NAs omitted.

airquality=na.omit(airquality)

#make Month a factor (i.e., the Month number is a name rather than a number)

airquality$Month=as.factor(airquality$Month)

#add a region factor

airquality$region = rep(c("north","south"),60)[1:111]

#Only use 5 data points for the homework so you can show the matrices easily

homeworkdat = airquality[1:5,]

1.1 Using Form 1 y = Zx + e, write the model being fit by this command
fit=lm(Ozone ~ Wind + Temp, data=homeworkdat)

1.2 Build the y and Z matrices for the above model in R and solve for x (the
parameters). Show that they match what you get from the first lm() call.

1.3 If you added -1 to your lm call in question 1, what changes in your model?
fit=lm(Ozone ~ -1 + Wind + Temp, data=homeworkdat)

1.4 Write the model for question 1 in Form 2. Adapt the code from subsection
1.2.4 to solve for the parameters. You will need to contruct new Z, y and
x in the code.

1.5 Model the ozone data with only a region (north/south) effect:

fit=lm(Ozone ~ -1 + region, data=homeworkdat)

Write this model in Form 1b (not Form 1) show that you can solve for the
parameter values you get from the lm call.

1.6 Write the model in question 5 in Form 2. Show that you can solve for the
parameter values you get from the lm call. Again to do this, you adapt
the code from subsection 1.2.4.

1.7* Write the model below in Form 2.

fit=lm(Ozone ~ Temp:region, data=homeworkdat)

1.8* Using the airquality dataset with 111 data points, write the model below
in Form 2 and solve for the parametes by adapting code from subsection
1.2.4.

fit=lm(Ozone ~ -1 + Temp:region + Month, data=airquality)

Solutions Chapter 1

Data Set Up

library(datasets)

data(airquality)

#remove any rows with NAs omitted.

airquality=na.omit(airquality)

#make Month a factor (i.e., the Month number is a name rather than a number)

airquality$Month=as.factor(airquality$Month)

#add a region factor

airquality$region = rep(c("north","south"),60)[1:111]

#Only use 5 data points for the homework so you can show the matrices easily

homeworkdat = airquality[1:5,]

Problem 1

Using Form 1 y = Zx+e, write the model being fit by this command

fit=lm(Ozone ~ Wind + Temp, data=homeworkdat)

The model is Ozonei = α + βwWindi + βtTempi + ei. Form 1 for this model is:
Ozone1
Ozone2
Ozone3
Ozone4
Ozone5

=


1 Wind1 Temp1
1 Wind2 Temp2
1 Wind3 Temp3
1 Wind4 Temp4
1 Wind5 Temp5


 α

βw
βt

+


e1
e2
e3
e4
e5


Problem 2

Build the y and Z matrices for the above model in R and solve for
x (the parameters). Show that they match what you get from the
‘lm‘ call.

22 1 Linear regression

Here are the y and Z. You can see they match the y and Z in the equation
above:

y=matrix(homeworkdat$Ozone, ncol=1)

Z=cbind(1, homeworkdat$Wind, homeworkdat$Temp)

y

[,1]

[1,] 41

[2,] 36

[3,] 12

[4,] 18

[5,] 23

Z

[,1] [,2] [,3]

[1,] 1 7.4 67

[2,] 1 8.0 72

[3,] 1 12.6 74

[4,] 1 11.5 62

[5,] 1 8.6 65

Next we solve for x and show it matches what we get from ’lm’. This uses the
code in section 1.1.1

solve(t(Z)%*%Z)%*%t(Z)%*%y

[,1]

[1,] 56.6219201

[2,] -4.9776707

[3,] 0.2538717

coef(lm(Ozone ~ Wind + Temp, data=homeworkdat))

(Intercept) Wind Temp

56.6219201 -4.9776707 0.2538717

Problem 3

If you added -1 to your ’lm’ call in question 1, what changes in your
model?

First run the ’lm’ call and see what changed. The intercept (α) is dropped.

fit=lm(Ozone ~ -1 + Wind + Temp, data=homeworkdat)

fit

23

Call:

lm(formula = Ozone ~ -1 + Wind + Temp, data = homeworkdat)

Coefficients:

Wind Temp

-4.650 1.037

The model is now Ozonei = βwWindi + βtTempi + ei. To get rid of the α we
drop the 1s column:

Ozone1
Ozone2
Ozone3
Ozone4
Ozone5

=


Wind1 Temp1
Wind2 Temp2
Wind3 Temp3
Wind4 Temp4
Wind5 Temp5


[

βw
βt

]
+


e1
e2
e3
e4
e5


Problem 4, part 1

Write the model for question 1 in Form 2.
In Form 2, y = Zx + e and the explanatory variables appear in the x as a

column vector (a matrix with one column). So x looks like this

1
Wind1
. . .

Wind5
Temp1
. . .

Temp5


Once you get that, then you know that Z is a 5× (1 + 5 + 5) matrix. The

first column of Z is the α. The next 5 columns of Z is a 5×5 diagonal matrix
with βw on the diagonal, just like in Equation 1.12. For the next explanatory
variable, Temperature, we tack on another 5× 5 diagonal matrix; this time
with βt on the diagonal. That’s all you needed to say for homework; just to
show that you figured out what the form of the y, Z and x look like.

If you wanted to write it out in math form, you could show Z as:[
column of 5×5 diagonal matrix 5×5 diagonal matrix

α with βw on the diagonal with βt on the diagonal

]
or  α βw . . . 0 βt . . . 0

.
.

.
α 0 . . . βw 0 . . . βt



24 1 Linear regression

Problem 4, part 2

Solve for the parameters.
To do the 2nd part, you adapt the code from subsection 1.2.3 to solve for

the parameters. You will need to contruct new Z, y and x in the code.
The y and x are easy:

y=matrix(homeworkdat$Ozone, ncol=1)

x=matrix(c(1, homeworkdat$Wind, homeworkdat$Temp), ncol=1)

We adapt the code for making Z from 1.2.3:

#we know that Z is a 5 x (1+5+5) matrix

#n is the number of data points

n=5

#nrows = n; what about ncol?, ncol is 1 (alpha) + n (Wind) + n (Temp)

Z=matrix(list(0),n,1+n+n)

#the first column is alpha

Z[,1]="alpha"

#columns 2:112 are a diagonal matrix with betaw on the diagonal

diag(Z[,2:(n+1)])="betaw"

#columns 113:223 are a diagonal matrix with betat on the diagonal

diag(Z[,(n+2):(2*n+1)])="betat"

Now we can solve for Z:

require(MARSS)

P=MARSS:::convert.model.mat(Z)$free[,,1]

M=kronecker(t(x),diag(n))%*%P

solve(t(M)%*%M)%*%t(M)%*%y

[,1]

alpha 56.6219201

betaw -4.9776707

betat 0.2538717

coef(lm(Ozone ~ Wind + Temp, data=homeworkdat))

(Intercept) Wind Temp

56.6219201 -4.9776707 0.2538717

Problem 5, part 1

Model the ozone data with only a region effect. Write this in Form
1b.

First make sure you understand what model is being fit by the ’lm’ call:

fit=lm(Ozone ~ -1 + region, data=homeworkdat)

fit

25

Call:

lm(formula = Ozone ~ -1 + region, data = homeworkdat)

Coefficients:

regionnorth regionsouth

25.33 27.00

The model is Ozonei = α j + ei where j is the region the measurement was
taken in. This is an intercept (or level) only model where the intercept is
determined by the region (north or south).

We want to write that model in matrix form using Form 1b, y = Dd+e. Eqn
1.21 shows you how to do this for Form 1, except we do not have explanatory
variables besides region so we do not have a column with something like ’air’
in it. Form 1b is the transpose of Form 1.

Matrix y is:
y =

[
Ozone1 Ozone2 . . . Ozone5

]
Matrix D is:

D =
[
αn αs

]
For d, we need to know that each column of d is for a different data point

i and tells us what region that data point is from. So d has 2 rows, one for
each region. If there is a 1 in row 1, it means that data point came from the
north. If there is a 1 in row 2, it means that data point came from the south.

Let’s look at the regions

homeworkdat$region

[1] "north" "south" "north" "south" "north"

So the first measurement is from the north, next from south, then north,
... Z looks like this [

1 0 1 0 1
0 1 0 1 0

]
The easy way to figure out d is to remember that Form 1b is just the

transpose of Form 1, so d = Z>. So let R show you what d is:

t(model.matrix(fit))

1 2 3 4 7

regionnorth 1 0 1 0 1

regionsouth 0 1 0 1 0

attr(,"assign")

[1] 1 1

attr(,"contrasts")

attr(,"contrasts")$region

[1] "contr.treatment"

26 1 Linear regression

Problem 5, part 2

Show that you can solve for the parameters.
Section 1.1.4 shows you how to solve for the parameters when the model

is in form 1b. We need to make y and d in R.

y=matrix(homeworkdat$Ozone, nrow=1)

We could form d like so

ndatapoints=5

d=matrix(0,2,ndatapoints)

for(i in 1:ndatapoints) d[ifelse(airquality$region[i]=="north",1,2),i]=1

or this

d=rbind(

as.numeric(airquality$region=="north"),

as.numeric(airquality$region=="south")

)

or just use the output from our ‘lm‘ call since R’s ’lm’ is forming the d matrix
too:

d=t(model.matrix(fit))

Now we solve for the parameters using the code in section 1.1.4:

y%*%t(d)%*%solve(d%*%t(d))

regionnorth regionsouth

[1,] 25.33333 27

coef(lm(Ozone ~ -1 + region, data=homeworkdat))

regionnorth regionsouth

25.33333 27.00000

Problem 6, part 1

Write the model in question 5 in Form 2
The reason we had to use a matrix with 1s and 0s to tell our matrix math

what α to use is that Form 1 and Form 1b have the parameters appearing
once in a column vector or a row vector. So we need a matrix with 1s and 0s
to say ’where’ to put the αs.

In Form 2, we can have the parameters just repeat in our matrix. This is
how we’d write the model on the whiteboard. We’d just have the α (intercept)
column have multiple αs in it. Section 1.3.2 shows you how to have different
intercepts in Form 2. The model in question 5 is just like in section 1.3.2, but
without the ‘air’. It just has different monthly intercepts.

27

The model is: 
Ozone1
Ozone2
Ozone3
Ozone4
Ozone5

=


αn
αs
αn
αs
αn

[1]+


e1
e2
e3
e4
e5

= Zx + e

Problem 6, part 2

Solve for the parameters Solve for the parameters
To do this we write y, Z, and x in R and use the code in section 1.2.3.

#the number of data points

n=5

y=matrix(homeworkdat$Ozone, ncol=1)

x=matrix(1)

Z=matrix(paste("alpha",homeworkdat$region, sep="."),ncol=1)

Then we solve for the parameters:

require(MARSS)

P=MARSS:::convert.model.mat(Z)$free[,,1]

M=kronecker(t(x),diag(n))%*%P

solve(t(M)%*%M)%*%t(M)%*%y

[,1]

alpha.north 25.33333

alpha.south 27.00000

coef(lm(Ozone ~ -1 + region, data=homeworkdat))

regionnorth regionsouth

25.33333 27.00000

Problem 7

Write the model below in Form 2 and solve for the parameters

fit=lm(Ozone ~ Temp:region, data=homeworkdat)

The first step is to write out what model is being fit. The model is

Ozonei = α + βnTempi + ei

if i is from the north and

Ozonei = α + βsTempi + ei

28 1 Linear regression

if i is from the south. So each region has the same intercept α but we are
including a linear temperature effect that is different for each region.

This is just like Equation 1.26 but with one α:


Ozone1
Ozone2
Ozone3
Ozone4
Ozone5

=


α βn 0 0 0 0
α 0 βs 0 0 0
α 0 0 βn 0 0
α 0 0 0 βs 0
α 0 0 0 0 βn




1

Temp1
Temp2
Temp3
Temp4
Temp5

+


e1
e2
. . .

e111

= Zx + e

Solving for this is a matter of writing y, Z, and x in R.

n=5 #the number of data points

y=matrix(homeworkdat$Ozone, ncol=1)

x=matrix(c(1, homeworkdat$Temp),ncol=1)

#Set up Z; it is 5 x 6

Z=matrix(list(0),n,n+1)

#make the alpha column

Z[,1]="alpha"

#make the diagonal of columns 2:6 equal to the betas

diag(Z[,2:(1+n)])=paste("beta",homeworkdat$region, sep=".")

Then we solve for the parameters:

require(MARSS)

P=MARSS:::convert.model.mat(Z)$free[,,1]

M=kronecker(t(x),diag(n))%*%P

solve(t(M)%*%M)%*%t(M)%*%y

[,1]

alpha 23.86230424

beta.north 0.01510679

beta.south 0.05654090

coef(lm(Ozone ~ Temp:region, data=homeworkdat))

(Intercept) Temp:regionnorth Temp:regionsouth

23.86230424 0.01510679 0.05654090

Problem 8**

Using the airquality dataset with 111 data points, write the model
below in Form 2 and solve for the parameters.

fit=lm(Ozone ~ -1 + Temp:region + Month, data=airquality)

29

The first step is to write out what model is being fit.

Ozonei = α j + βkTempi + ei

If i is from the j-th month, the intercept is α j. If i is from the north, betak is
βn. If it is from the south, betak is βs.

Next, let’s look at region and Month.

airquality$region[1:10]

[1] "north" "south" "north" "south" "north" "south" "north"

[8] "south" "north" "south"

airquality$Month

[1] 5 6 6 6

[28] 6 6 6 6 6 6 7

[55] 7 7 7 7 7 8

[82] 8 9

[109] 9 9 9

Levels: 5 6 7 8 9

Region is alternating north/south and month is grouped.
So in matrix form our model looks like


Ozone1
Ozone2
. . .

Ozone111

=


α5 βn 0 . . . 0 0
α5 0 βs . . . 0 0

.
. 0

α9 0 0 . . . βs 0
α9 0 0 . . . 0 βn




1
Temp1
Temp2
. . .

Temp111

+


e1
e2
. . .

e111

= Zx + e

Solving for this is a matter of writing y, Z, and x in R. We don’t have to
create character strings for our parameter names. We just use the text in our
data.frame and use the paste() function.

n=111 #the number of data points

y=matrix(airquality$Ozone, ncol=1)

x=matrix(c(1, airquality$Temp),ncol=1)

#Set up Z; it is 111 x 112

Z=matrix(list(0),n,n+1)

#make the alpha column

Z[,1]=paste("alpha",airquality$Month, sep="")

#make the diagonal of columns 2:112 equal to the betas

diag(Z[,2:(1+n)])=paste("beta",airquality$region, sep=".")

Then we solve for the parameters:

30 1 Linear regression

require(MARSS)

P=MARSS:::convert.model.mat(Z)$free[,,1]

M=kronecker(t(x),diag(n))%*%P

solve(t(M)%*%M)%*%t(M)%*%y

[,1]

alpha5 -160.254743

alpha6 -187.708278

alpha7 -173.611725

alpha8 -172.152400

alpha9 -181.929911

beta.north 2.790616

beta.south 2.758379

coef(lm(Ozone ~ -1 + Temp:region + Month, data=airquality))

Month5 Month6 Month7

-160.254743 -187.708278 -173.611725

Month8 Month9 Temp:regionnorth

-172.152400 -181.929911 2.790616

Temp:regionsouth

2.758379

	Linear regression models in matrix form
	Form 1
	Solving for the parameters*
	Form 1 with multiple explanatory variables
	When does Form 1 arise?
	Form 1b: The transpose of Form 1

	Form 2
	Form 2 with multiple explanatory variables
	When does Form 2 arise?
	Solving for the parameters for Form 2*
	Code to solve for parameters in Form 2

	Groups of intercepts
	North/South intercepts in Form 1
	North/South intercepts in Form 2

	Groups of 's
	Owner 's in Form 1
	Owner 's in Form 2

	Seasonal effect as a factor
	Seasonal intercepts written in Form 1
	Seasonal intercepts written in Form 2

	* Seasonal effect plus other explanatory variables
	* Models with confounded parameters
	Problems

	Solutions Chapter 1

