Time series analysis in the frequency domain

FISH 550 - Applied Time Series Analysis

Mark Scheuerell
23 May 2023

Topics for today

What is the frequency domain?
Fourier transforms
Spectral analysis
Wavelets

Time domain

We having been examining changes in x_{t} over time

Time domain

We can think of this as comparing changes in amplitude (displacement) with time

Frequency domain

Today we'll consider how amplitude changes with frequency

Jean-Baptiste Fourier (1768-1830)

French mathematician \& physicist best known for his studies of heat transfer
First described what we now call the "greenhouse effect"

Solving hard problems

Solving the heat equation involves solving partial differential equations conditional on some boundary conditions

Problem
really \mid hard
Solution

Fourier's approach

Find $f(t)$ and $\hat{f}(t)$, such that
Problem $\xrightarrow{f(t)}$ Transformed problem
really |hard
Solution

$$
\text { much } \downarrow \text { easier }
$$

Transformed solution

Fourier series

Complex periodic functions can be written as infinite sums of sine waves

$$
f(t)=a_{0}+\sum_{k=1}^{\infty} a_{k} \sin \left(2 \pi f_{0} k t+p_{k}\right)
$$

where
k is the wave number (index)
a_{k} is the amplitude of wave k
f_{0} is the fundamental frequency
p_{k} is the phase shift

Fourier series

A finite example

$$
f(t)=\sum_{k=1}^{5} \frac{1}{k} \sin \left(2 \pi k t+k^{2}\right)
$$

Fourier series

Fourier series

Fourier series

Here's an animated example from Wikipedia

Fourier transform

We can make use of Euler's formula

$$
\cos (2 \pi k)+i \sin (2 \pi k)=e^{i 2 \pi k}
$$

and write the Fourier transform of $f(t)$ as

$$
f(t)=\int_{-\infty}^{\infty} \hat{f}(k) e^{i 2 \pi t k} d k
$$

where k is the frequency

Discrete Fourier transform

Fourier transform

$$
f_{k}=\sum_{n=0}^{N-1} x_{t} e^{-i 2 \pi n k}
$$

Fourier transforms in R

R uses what's known as Fast Fourier transform via fft (), which returns the amplitude at each frequency

```
ft <- fft(xt)
## often normalize by the length
ft <- fft(xt) / length(xt)
```


Fourier represention of our $\left\{x_{t}\right\}$

Discrete Inverse Fourier transform

Fourier transform

$$
f_{k}=\sum_{n=0}^{N-1} x_{t} e^{-i 2 \pi n k}
$$

Inverse

$$
x_{t}=\sum_{k=0}^{N-1} f_{k} e^{i 2 \pi n k}
$$

Inverse Fourier transforms in R

```
    i <- complex(1, re = 0, im = 1)
xx <- rep(NA, TT)
kk <- seq(TT) - 1
## Inverse Fourier transform
## ft <- fft(xt)
for(t in kk) {
    xx[t+1] <- sum(ft * exp(i*2*pi*kk*t/TT))
}
```


Original $\left\{x_{t}\right\}$ \& our inverse transform

Inverse Fourier transforms in R

```
ift <- fft(ft, inverse = TRUE)
```


Original $\left\{x_{t}\right\} \&$ R's inverse transform

Spectral analysis

Spectral analysis

Spectral analysis refers to a general way of decomposing time series into their constituent frequencies

Spectral analysis

Consider a linear regression model for $\left\{x_{t}\right\}$ with various sines and cosines as predictors

$$
x_{t}=a_{0}+\sum_{k=1}^{n / 2-1} a_{k} \cos \left(2 \pi f_{0} k t / n\right)+b_{k} \sin \left(2 \pi f_{0} k t / n\right)
$$

Periodogram

The periodogram measures the contributions of each frequency k to $\left\{x_{t}\right\}$

$$
P_{k}=a_{k}^{2}+b_{k}^{2}
$$

Estimate the periodogram in R

```
spectrum(xt, log = "on")
spectrum(xt, log = "off")
spectrum(xt, log = "dB")
```


Periodogram for our $\left\{x_{t}\right\}$

spectrum(xt, log = "dB")

Periodogram for our $\left\{x_{t}\right\}$

Density on natural scale \& frequency in cycles per time

Spectral density estimation via AR(p)

For an $\operatorname{AR}(p)$ process

$$
x_{t}=\phi_{1} x_{t-1}+\phi_{2} x_{t-2}+\cdots+\phi_{p} x_{t-p}+e_{t}
$$

The spectral density is

$$
S\left(f, \phi_{1}, \ldots, \phi_{p}, \sigma^{2}\right)=\frac{\sigma^{2} \Delta t}{\left|1-\sum_{k=1}^{p} \phi_{k} e^{-i 2 \pi f k \Delta t}\right|^{2}}
$$

Limits to spectral analysis

Spectral analysis works well for

1. stationary time series
2. identifying periodic signals corrupted by noise

Limits to spectral analysis

Spectral analysis works well for

1. stationary time series
2. identifying periodic signals corrupted by noise

But...

1. it's an inconsistent estimator for most real data sets
2. it's generally biased

Wavelets

Shifting frequencies

What if the frequency changes over time?

Wavelets

For non-stationary time series we can use so-called wavelets
A wavelet is a function that is localized in time \& frequency

Graphical forms for decomposition

Fourier transform

Graphical form for decomposition

What is a wavelet?

Formally, a wavelet ψ is defined as

$$
\psi_{\sigma, \tau}(t)=\frac{1}{\sqrt{|\sigma|}} \psi\left(\frac{t-\tau}{\sigma}\right)
$$

where τ determines its position $\& \sigma$ determines its frequency

Graphical form for decomposition

Properties of wavelets

It goes up and down

$$
\int_{-\infty}^{\infty} \psi(t) d t=0
$$

It has a finite sum

$$
\int_{-\infty}^{\infty}|\psi(t)| d t<\infty
$$

How are wavelets defined?

In terms of scaling functions that describe

1. Dilations

$$
\psi(t) \rightarrow \psi(2 t)
$$

2. Translations

$$
\psi(t) \rightarrow \psi(t-1)
$$

How are wavelets defined?

More generally,

$$
\psi_{j, k}(t)=2^{j / 2} \psi\left(2^{j} t-k\right)
$$

where
j is the dilation index
k is the translation index
and
$2^{j / 2}$ is a normalization constant

Wavelets in practice

There are many options for $\psi(t)$, but we'll use scaling functions and define

$$
\psi(t)=\sum_{k=0}^{K} c_{k} \psi(2 x-k)
$$

where the c_{k} are filter coefficients*
*Note that $\psi(t)$ gets "smoother" as K increases

Haar's scaling function

Simple, but commonly used, where $K=1 ; c_{0}=1 ; c_{1}=1$

$$
\begin{gathered}
\psi(t)=\sum_{k=0}^{K} c_{k} \psi(2 t-k) \\
\Downarrow \\
\psi(t)=\psi(2 t)+\psi(2 t-1)
\end{gathered}
$$

The only function that satisfies this is:

$$
\begin{aligned}
& \psi(t)=1 \text { if } 0 \leq t \leq 1 \\
& \psi(t)=0 \text { otherwise }
\end{aligned}
$$

Haar's scaling function

Haar's scaling function

In terms of the dilation

$$
\begin{aligned}
& \psi(2 t)=1 \text { if } 0 \leq t \leq 0.5 \\
& \psi(2 t)=0 \text { otherwise }
\end{aligned}
$$

and translation

$$
\begin{aligned}
& \psi(2 t-1)=1 \text { if } 0.5 \leq t \leq 1 \\
& \psi(2 t-1)=0 \text { otherwise }
\end{aligned}
$$

Haar's scaling function (father)

Haar's mother wavelet

Wavelets are created via differencing of scaling functions

$$
\psi(t)=\sum_{k=0}^{1}(-1)^{k} c_{k} \psi(2 t-k)
$$

where $(-1)^{k}$ creates the difference

Haar's mother wavelet

Family of Haar's wavelets

So-called "child" wavelets are created via dilation \& translation

$$
\psi_{j, k}(t)=2^{j / 2} \psi\left(2^{j} t-k\right)
$$

The mother Haar wavelet has $j=0$

Family of Haar's wavelets

So-called "child" wavelets are created via dilation \& translation

$$
\psi_{j, k}(t)=2^{j / 2} \psi\left(2^{j} t-k\right)
$$

The basic Haar wavelet has $j=0$
Setting $j=1$ yields a daughter

$$
\psi_{j, k}(t)=\sqrt{2} \psi(2 t-k)
$$

Haar's daughter wavelet

$$
\psi(t)=\sum_{k=0}^{1}(-1)^{k} c_{k} \sqrt{2} \psi(2 t-k)
$$

Recall that $(-1)^{k}$ creates the difference

A daughter wavelet of Haar's

Other wavelets

There are many forms of wavelets, many of which were developed in the past 50 years

Morlet

Mexican Hat

Who does this?

Wavelet analysis is used widely in audio \& video compression

JPEG

Estimating wavelet transforms in R

We'll use the WaveletComp package, which uses the Morlet wavelet
We'll also use the L Washington temperature data from the MARSS package
library(WaveletComp)
\#\# L WA temperature data
tmp <- MARSS::lakeWAplanktonTrans[,"Temp"]
\#\# WaveletComp needs data as df
dat <- data.frame(tmp = tmp)

Estimating wavelet transforms in R

Use analyze.wavelet() to estimate the wavelet transform

```
w_est <- analyze.wavelet(dat, "tmp", ## need both df & colname
    loess.span = 0, ## no de-trending
    dt = 1/12, ## monthly sampling
    lowerPeriod = 1/6, ## default = 2*dt
    n.sim = 100,
    verbose = FALSE)
```


Estimating wavelets in R

Use wt.image() to plot the spectrum

Inverse wavelet transforms

Involves integral calculus

$$
f(t)=\frac{1}{C_{\psi}} \int_{a} \int_{b}<f(t), \psi_{a, b}(t)>\psi_{a, b}(t) d b \frac{d a}{a^{2}}
$$

Inverse wavelet transforms in R

Use reconstruct() to get estimate of original time series

